[1] |
高奇. 新形势下我国碳纤维产业发展探究[J]. 合成纤维工业, 2019,42(5):1-7.
|
|
GAO Qi. Research on the development of China's carbon fiber industry in the new situation[J]. China Synthetic Fiber Industry, 2019,42(5):1-7.
|
[2] |
顾佳杰. 碳纤维产业研究发展报告[J]. 上海化工, 2019,44(3):32-36.
|
|
GU Jiajie. Carbon fiber industry development report[J]. Shanghai Chemical, 2019,44(3):32-36.
|
[3] |
杨玉娥, 张文习. 碳纤维复合材料的无损检测综述[J]. 济南大学学报(自然科学版), 2015,29(6):471-476.
|
|
YANG Yu'e, ZHANG Wenxi. Summary of nondestructive testing of carbon fiber composites[J]. Journal of University of Jinan (Science and Technology), 2015,29(6):471-476.
|
[4] |
倪金辉. 基于机器视觉的预浸纱缺陷检测系统的研究[D]. 南京: 南京航空航天大学, 2015: 1-5.
|
|
NI Jinhui. Defect detection system for prepreg based on machine vision[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 1-5.
|
[5] |
李文羽, 程隆棣. 基于机器视觉和图像处理的织物疵点检测研究新进展[J]. 纺织学报, 2014,35(3):158-164.
|
|
LI Wenyu, CHENG Longdi. New progress in fabric defect detection based on machine vision and image processing[J]. Journal of Textile Reaearch, 2014,35(3):158-164.
|
[6] |
张浩. 基于深度学习的表面缺陷检测方法研究[D]. 苏州: 苏州大学, 2018: 1-3.
|
|
ZHANG Hao. Study on surface defect detection method based on deep learning[D]. Suzhou: Soochow University, 2018: 1-3.
|
[7] |
REDMON Joseph, DIVVALA Santosh, GIRSHICK Ross, et al. You look only once: unified, real-time objection detection [C]//2016 IEEE conference on computer vision and pattern recognition(CVPR). Las Vegas: IEEE, 2016: 779-788.
|
[8] |
REDMON Joseph, FARHADI Ali. YOLO9000: better, faster, stronger [C]//2017 IEEE conference on computer vision and pattern recognition(CVPR). Venice: IEEE, 2017: 1-9.
|
[9] |
REN Shaoqing, HE Kaiming, GIRSHICK Ross. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
|
[10] |
牟新刚, 蔡逸超, 周晓, 等. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018,39(1):139-145.
|
|
MOU Xingang, CAI Yichao, ZHOU Xiao, et al. Online yarn cone defects detection system based on machine vision[J]. Journal of Textile Reasearch, 2018,39(1):139-145.
|
[11] |
HE Kaiming, SUN Jian, TANG Xiaoou. Single image haze removal using dark channel prior [C]//2009 IEEE conference on computer vision and pattern recogni-tion(CVPR). Miami: IEEE, 2009: 1956-1963.
|
[12] |
WANG Xuelong, GAO Ying, DONG Junyu. Surface defects detection of paper dish based on Mask R-CNN [C]//Third international workshop on pattern recognition(IWPR). Jinan: Proceeding of Spie, 2018: 1-6.
|
[13] |
LIN Min, CHEN Qiang, YAN Shuichen. Network in network [C]//International conference on learning representations. Banff: ICLR, 2014: 1-10.
|
[14] |
IOFFE Sergey, SZEGEDY Christian. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]//International conference on macine learning(ICML). Lille: IMLS, 2015: 448-456.
|
[15] |
CHA Youngjin, CHOI Wooram. Deep learning based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastucture Engineering, 2017,32:361-378.
|
[16] |
LENG Jianwei, GUO Kai. Research on monocular visual gesture positioning based on YOLOv2[C]//Proceeding of the 37th chinese control conference. Shanghai: Shanghai Systems Science Press, 2018: 9101-9106.
|
[17] |
ZHANG Hongwei, ZHANG Lingjie, LI Pengfei, et al. Yarn-dyed fabric defect detection with YOLOv2 based on deep convolution neural networks [C]//Data driven control and learning systems conference. Enshi: IEEE, 2018: 170-174.
|
[18] |
何晓昀, 韦平, 张林. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018,39(6):131-135.
|
|
HE Xiaoyun, WEI Ping, ZHANG Lin. Detection method of foreign fibers in seed cotton based on deep-learning[J]. Journal of Textile Reasearch, 2018,39(6):131-135.
|