Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (04): 117-122.doi: 10.13475/j.fzxb.20190302907

• Apparel Engineering • Previous Articles     Next Articles

Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel

GAO Shan1, LU Yehu1,2,3(), ZHANG Desuo1, WU Lei1, WANG Laili2   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
    2. Clothing Engineering Research Center of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Nantong Textile and Silk Industrial Technology Research Institute, Nantong, Jiangsu 226300, China
  • Received:2019-03-12 Revised:2019-12-30 Online:2020-04-15 Published:2020-04-27
  • Contact: LU Yehu E-mail:yhlu@suda.edu.cn

Abstract:

To further improve the comprehensive performance of thermal protective clothing and meet the needs of increasing thermal protection with reduced heat storage, a type of graphene aerogel material with low density, low thermal conductivity and good heat insulating property was prepared by the modified Hummers method, and a composite flame retardant fabric system was constructed. The thermal protective performance of graphene aerogel with different thickness was measured in a low radiation condition. The results show that the flame retardant composite fabrics with graphene aerogel block provides better thermal protective performance, with the time required to cause skin damage extending about 203% and the time required to generate skin burn extending about 218%. It is found that the relationship between the thermal protective performance and the graphene aerogel thickness is not linear. The water vapor transfer of the flame retardant composite fabrics with graphene aerogel block is around 10.4 g/(m2·24 h), presenting no significant difference compared to fabrics untreated by graphene aerogel.

Key words: graphene aerogel, flame retardant fabric, thermal protective performance, air layer, modified Hummers method

CLC Number: 

  • TS941.73

Fig.1

Three graphene aerogel samples with different heights. (a)Front view; (b)Back view; (c)Side view"

Tab.1

Basic properties of fabrics"

位置 织物层 成分 组织结构 面密度/(g·m-2) 厚度/mm
外层 防火层 芳纶1313/芳纶1414(98/2) 斜纹 193.7 0.49
中层 防水透气层 芳纶1313基布、聚四氟乙烯膜 层压 108.3 0.70
内层 隔热层 芳纶1313毡和基布 针刺 200.0 0.43

Fig.2

Composition of graphene aerogel composite flame retardant fabric. (a) Combination method;(b) Fix method"

Fig.3

Graphene aerogel after radiation"

Fig.4

SEM images of graphene aerogel before (a) and after (b) radiation(×3 000)"

Fig.5

Temperature curve of sensors at different positions with time of heat exposure"

Tab.2

Thermal protection of aerogel based flame resistant fabrics"

织物
编号
达到12 ℃
时间/s
达到24 ℃
时间/s
达到最高
体感温度
时间/s
体感最高
温度/℃
体感最大
温升/℃
0# 10.20 20.40 85.50 129.20 106.00
1# 26.60 58.70 109.60 73.60 47.80
2# 32.70 64.00 115.50 68.50 42.90
3# 28.80 55.60 113.00 77.70 51.80
4# 19.70 46.60 110.10 107.51 72.88
5# 31.40 83.90 143.21 62.12 37.68
6# 27.50 96.40 149.90 58.32 30.45
7# 40.63 79.41 138.02 66.80 32.87
8# 38.96 85.23 125.72 65.35 31.84
9# 41.22 88.24 138.43 64.89 32.02

Tab.3

Evaporation of graphene aerogel and composite fabric system at different storage times"

试样名称 凝胶层厚
度/mm
蒸发量/g
1 h 2 h 3 h 4 h 5 h 6 h 24 h
石墨烯气凝胶 6 0.083 0.013 0.017 0.018 0.020 0.019 0.345
8 0.011 0.037 0.042 0.025 0.029 0.028 0.450
10 0.036 0.018 0.042 0.025 0.029 0.026 0.448
石墨烯气凝胶
复合防火织物
6 0.007 0.014 0.018 0.020 0.020 0.022 0.385
8 0.007 0.012 0.017 0.017 0.019 0.026 0.366
10 0.006 0.017 0.025 0.026 0.029 0.031 0.558
空白对照组(0#) 0.010 0.015 0.018 0.019 0.021 0.017 0.342
[1] 迟彩霞, 刘越, 吴昊, 等. 石墨烯气凝胶的制备与应用研究进展[J]. 应用化工, 2018,47(9):2001-2004,2009.
CHI Caixia, LIU Yue, WU Hao, et al. Process in the preparation and application of graphene aerogels[J]. Applied Chemical Industry, 2018,47(9):2001-2004,2009.
[2] HE J, PARK E, LI J, et al. Physiological and psychological responses while wearing firefighters' protective clothing under various ambient conditions[J]. Textile Research Journal, 2017,87(8):929-944.
[3] 张兴娟, 吴洪飞, 孔祥明. 新型组合式消防服热防护性能分析[J]. 中国个体防护装备, 2013 (6):20-24.
ZHANG Xingjuan, WU Hongfei, KONG Xiangming. Analysis of thermal protection performance of aerogel-based new combined firefighters' clothing[J]. China Personal Protective Equipment, 2013(6):20-24.
[4] 任乾乾, 林兰天, 郑慧琴. 应用二氧化硅气凝胶的防火隔热组合织物研究[C]//第五届“稷下”研究生学术论文论文集.上海:上海纺织科技, 2011: 292-298.
REN Qianqian, LIN Lantian, ZHENG Huiqin. Research of fireproof and insulation composite fabric by use of silica aerogels[C]//The fifth "Ji Xia" graduate academic papers collection. Shanghai: Shanghai Textile Science & Technology, 2011: 292-298.
[5] 胡银. 气凝胶运用于消防服隔热性能测试及合成研究[D]. 合肥:中国科学技术大学, 2013: 45-120.
HU Yin. Synthesis and heat insulation test of aerogel using in fire fighter's protective clothing[D]. Hefei: University of Science Technology of China, 2013: 45-120.
[6] SHAID A, WANG L, FERGUSSON S M, et al. Effect of aerogel incorporation in PCM-containing thermal liner of firefighting garment[J]. Clothing and Textiles Research Journal, 2018,36(3):151-164.
[7] ZHANG H, SONG G, SU H, et al. An exploration of enhancing thermal protective clothing performance by incorporating aerogel and phase change materials[J]. Fire and Materials, 2017,41(8):953-963.
[8] 徐刚, 张春梅, 薛文超, 等. 石墨烯及其气凝胶的制备方法综述[J]. 装备制造技术, 2016(11):60-64.
XU Gang, ZHANG Chunmei, XUE Wenchao, et al. Review of preparation methods of graphene and aerogels[J]. Equipment Manufacturing Technology, 2016(11):60-64.
[9] WANG J, ELLSWORTH M. Graphene aerogels[J]. ECS Transactions, 2009,19(5):241-247.
[10] HE Jiazhen, LU Yehu, YANG Jie. Quantification of the energy storage caused dual performance of thermal protective clothing containing with moisture exposed to hot steam[J]. Energy Science and Engineering, 2019,7:2585-2595.
[11] 王帅, 卢业虎, 王丽君, 等. 低辐射环境下形状记忆合金对防火织物隔热性能的影响[J]. 纺织学报, 2017,38(8):114-119.
WANG Shuai, LU Yehu, WANG Lijun, et al. Influence of shape memory alloy on thermal insulation performance of flame retardant fabrics in low radiation environ-ment[J]. Journal of Textile Research, 2017,38(8):114-119.
[12] 马妮妮, 卢业虎, 戴宏钦. 形状记忆材料在功能防护服中的应用[J]. 纺织学报, 2018,39(4):170-174.
MA Nini, LU Yehu, DAI Hongqin. Application of shape memory material in functional and protective clo-thing[J]. Journal of Textile Research, 2018,39(4):170-174.
[1] WANG Qi, TIAN Miao, SU Yun, LI Jun, YU Mengfan, XU Xiao. Effect of open / closed air layer on thermal protective performance of flame-resistant fabrics [J]. Journal of Textile Research, 2020, 41(12): 54-58.
[2] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[3] WANG Yang, CHENG Chunzu, JIANG Li′na, REN Yuanlin, GUO Yingbin. Preparation of durable flame retardant polyacrylonitrile fabrics using UV-induced photo-grafting polymerization combined with sol-gel coating [J]. Journal of Textile Research, 2020, 41(10): 107-115.
[4] ZHAI Li′na, LI Jun, YANG Yunchu. Development and current state of thermal sensors used for testing thermal protective clothing [J]. Journal of Textile Research, 2020, 41(10): 188-196.
[5] HE Jiazhen, XUE Xiaoyu, WANG Min, LI Jun. Predicting thermal protective performance of clothing based on maximum attenuation factor model [J]. Journal of Textile Research, 2020, 41(06): 112-117.
[6] QIU Hao, SU Yun, WANG Yunyi. Influence of steam exposure condition on thermal protective performance of fabrics [J]. Journal of Textile Research, 2020, 41(01): 118-123.
[7] HU Beibei, DU Feifei, LI Xiaohui. Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing [J]. Journal of Textile Research, 2019, 40(11): 140-144.
[8] SU Yun, YANG Jie, LI Rui, SONG Guowen, LI Jun, ZHANG Xianghui. Predictions of physiological reaction and skin burn of firefighter exposing to thermal radiation [J]. Journal of Textile Research, 2019, 40(02): 147-152.
[9] . Influence of size of shape memory alloy on thermal protection of fabrics used in firefighters’ protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 113-118.
[10] . Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 111-118.
[11] . Research progress on air gap entrapped in firefighters' protective clothing and its measurement methods [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 151-156.
[12] . Influence of waterproof permeable layer on thermal and moisture protective performance of firefighter protective clothing in fire disaster [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 152-158.
[13] . Design of pulse sensing fabric based on fiber Bragg grating [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 38-41.
[14] . Effects of light and moisture on performance of fabrics for firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(09): 82-88.
[15] . Evaluation of thermal protective performance of fabric for firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 110-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!