Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (04): 9-14.doi: 10.13475/j.fzxb.20190500106

• Fiber Materials • Previous Articles     Next Articles

Effect of urea degumming on mechanical properties of silk fibroin aerogels

WANG Zongqian1, YANG Haiwei1, ZHOU Jian2, LI Changlong1()   

  1. 1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
  • Received:2019-05-05 Revised:2020-01-13 Online:2020-04-15 Published:2020-04-27
  • Contact: LI Changlong E-mail:licl@ahpu.edu.cn

Abstract:

Aiming at improving mechanical properties of silk fibroin aerogel, a urea degumming process applied on raw silk was reported, and the silk fibroin aerogel was prepared through fibroin dissolution, dilution and freeze-drying. Meanwhile, the morphology and structure of the aerogel were analyzed by scanning electron microscopy, X-ray diffraction spectroscopy, infrared spectrometer and universal material testing machine. The results of which were compared with the aerogel prepared from sodium carbonate degummed silk. The findings show that the non-alkali urea degumming process has a little damage on silk fibroin, and the prepared aerogel exhibits a complete morphology and a stable skeleton structure, with relative content of its β-sheet structure being 50.27% and its crystallinity 49.33%. The compressive strength and compressive modulus of the aerogel are found to be (32.36±2.35) and (119.31± 8.93) kPa at 70% the compression deformation respectively, which are much higher than those of fibroin aerogels prepared through sodium carbonate degumming process.

Key words: silk fibroin, aerogel, urea degumming, mechanical property, crystalline structure

CLC Number: 

  • S881.3

Fig.1

Compressive stress-strain curve of two different SF aerogels"

Fig.2

SEM images of SF-U (a) and SF-S (b) aerogel (×100)"

Fig.3

FT-IR spectra of SF-U and SF-S aerogels"

Fig.4

Gaussian peak fitting of SF-U (a) and SF-S (b) aerogel"

Tab.1

Fitting results of secondary structures in SF aerogel"

样品名称 拟合系数
(R2)
二级结构
的类型
波数/
cm-1
相对含
量/%
SF-U
气凝胶
0.999 7 无规则卷曲 1 681 37.43
1 670
1 649
α-螺旋 1 661 12.30
1 640 50.27
β-折叠 1 630
1 618
SF-S
气凝胶
0.999 5 无规则卷曲 1 681 49.37
1 670
1 649
1 644
α-螺旋 1 660 6.88
β-折叠 1 635 43.75
1 620

Fig.5

XRD spectra of SF-U and SF-S aerogels"

[1] ZHU B, WANG H, LEOW W R, et al. Silk fibroin for flexible electronic devices[J]. Advanced Materials, 2016,28(22):4250-4265.
[2] KOH L D, CHENG Y, TENG C P, et al. Structures, mechanical properties and applications of silk fibroin materials[J]. Progress in Polymer Science, 2015,46:86-110.
[3] QI Y, WANG H, WEI K, et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures[J]. International Journal of Molecular Sciences, 2017,18(3):237-258.
[4] SU D, JIANG L, CHEN X, et al. Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with laponite nanoplatelets[J]. ACS Applied Materials & Interfaces, 2016,8(15):9619-9628.
pmid: 26989907
[5] SOMMER M R, VETSCH J R, LEEMANN J, et al. Silk fibroin scaffolds with inverse opal structure for bone tissue engineering[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2017,105(7):2074-2084.
[6] 王宗乾, 杨海伟, 汤立洋, 等. 丝素蛋白/聚乙烯醇复合膜的制备及其表征[J]. 纺织学报, 2018,39(11):14-19.
WANG Zongqian, YANG Haiwei, TANG Liyang, et al. Preparation and characterization of silk fibroin/polyvinyl alcohol composite membrane[J]. Journal of Textile Research, 2018,39(11):14-19.
[7] WANG S, ZHANG Y, WANG H, et al. Preparation, characterization and biocompatibility of electrospinning heparin-modified silk fibroin nanofibers[J]. International Journal of Biological Macromolecules, 2011,48(2):345-353.
[8] WEN X, PENG X, FU H, et al. Preparation and in vitro evaluation of silk fibroin microspheres produced by a novel ultra-fine particle processing system[J]. International Journal of Pharmaceutics, 2011,416(1):195-201.
pmid: 21741461
[9] TSIORIS K, RAJA W K, PRITCHARD E M, et al. Fabrication of silk microneedles for controlled-release drug delivery[J]. Advanced Functional Materials, 2012,22(2):330-335.
[10] SMIRNOVA I, GURIKOV P. Aerogel production: current status, research directions, and future opportunities[J]. The Journal of Supercritical Fluids, 2018,134:228-233.
[11] MALEKI H. Recent advances in aerogels for environmental remediation applications: a review[J]. Chemical Engineering Journal, 2016,300:98-118.
[12] STERGAR J, MAVER U. Review of aerogel-based materials in biomedical applications[J]. Journal of Sol-Gel Science and Technology, 2016,77(3):738-752.
[13] MALEKI H, HUESING N. Silica-silk fibroin hy-brid (bio) aerogels: two-step versus one-step hybridization[J]. Journal of Sol-Gel Science and Technology, 2019. DOI: 10.1007/s10971-019-04933-4.
pmid: 23833395
[14] MARIN M A, MALLEPALLY R R, MCHUGH M A. Silk fibroin aerogels for drug delivery applications[J]. The Journal of Supercritical Fluids, 2014,91:84-89.
doi: 10.1016/j.supflu.2014.04.014
[15] ZHAO S, MALFAIT W J, GUERRERO-ALBURQUERQUE N, et al. Biopolymer aerogels and foams: chemistry, properties, and applications[J]. Angewandte Chemie International Edition, 2018,57(26):7580-7608.
[16] WU F, ZHU Y, CHEN Y, et al. Preparation and characterization of silk fibroin aerogel[J]. Journal of Donghua University(English Edition), 2018,35(1):16-20.
[17] GOIMIL L, SANTOS-ROSALES V, DELGADO A, et al. scCO2-foamed silk fibroin aerogel/poly(ε-caprolactone) scaffolds containing dexamethasone for bone regeneration[J]. Journal of CO2 Utilization, 2019,31:51-64.
[18] MALLEPALLY R R, MARIN M A, SURAMPUDI V, et al. Silk fibroin aerogels: potential scaffolds for tissue engineering applications[J]. Biomedical Materials, 2015.DOI: 10.1088/1748-6041/10/3/035002.
[19] WANG H Y, ZHANG Y Q. Effect of regeneration of liquid silk fibroin on its structure and characteriza-tion[J]. Soft Matter, 2013,9(1):138-145.
[20] MALEKI H, MONTES S, HAYATI-ROODBARI N, et al. Compressible, thermally insulating, and fire retardant aerogels through self-assembling silk fibroin biopolymers inside a silica structure: an approach towards 3D printing of aerogels[J]. ACS Applied Materials & Interfaces, 2018,10(26):22718-22730.
[21] MALEKI H, WHITMORE L, HUESING N. Novel multifunctional polymethylsilsesquioxane-silk fibroin aerogel hybrids for environmental and thermal insulation applications[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018,6(26):12598-12612.
doi: 10.1039/c8ta02821d pmid: 30713688
[22] YETISKIN B, OKAY O. High-strength and self-recoverable silk fibroin cryogels with anisotropic swelling and mechanical properties[J]. International Journal of Biological Macromolecules, 2019,122:1279-1289.
pmid: 30227202
[23] 王宗乾, 杨海伟, 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018,39(4):69-76.
WANG Zongqian, YANG Haiwei, WANG Dengfeng. Influence of degumming on solution of silk fiber and property of fibroin[J]. Journal of Textile Research, 2018,39(4):69-76.
[24] WANG Z, YANG H, LI W, et al. Effect of silk degumming on the structure and properties of silk fibroin[J]. The Journal of The Textile Institute, 2019,110(1):134-140.
[25] GUAN Y, YANG X, WANG L, et al. A novel silk/polyester woven small diameter arterial prosjournal: degumming and the influence on cytocompatibility[J]. Fibers and Polymers, 2015,16(7):1533-1539.
[26] JIANG F, HSIEH Y L. Amphiphilic superabsorbent cellulose nanofibril aerogels[J]. Journal of Materials Chemistry A: Material for Energy and Sustainability, 2014,2(18):6337-6342.
[27] ZHANG R, GUO J, LIU Y, et al. Effects of sodium salt types on the intermolecular interaction of sodium alginate/antarctic krill protein composite fibers[J]. Carbohydrate Polymers, 2018,189:72-78.
doi: 10.1016/j.carbpol.2018.02.013 pmid: 29580428
[28] WANG Z, YANG H, ZHU Z. Study on the blends of silk fibroin and sodium alginate: hydrogen bond formation, structure and properties[J]. Polymer, 2019,163:144-153.
[29] BETZ M, GARCÍA-GONZÁLEZ C A, SUBRAHMANYAM R P, et al. Preparation of novel whey protein-based aerogels as drug carriers for life science applications[J]. The Journal of Supercritical Fluids, 2012,72:111-119.
[30] FLOREN M L, SPILIMBERGO S, MOTTA A, et al. Carbon dioxide induced silk protein gelation for biomedical applications[J]. Biomacromolecules, 2012,13(7):2060-2072.
doi: 10.1021/bm300450a pmid: 22657735
[31] YETISKIN B, OKAY O. High-strength silk fibroin scaffolds with anisotropic mechanical properties[J]. Polymer, 2017,112:61-70.
[32] AK F, OZTOPRAK Z, KARAKUTUK I, et al. Macroporous silk fibroin cryogels[J]. Biomacromolecules, 2013,14(3):719-727.
doi: 10.1021/bm3018033 pmid: 23360211
[33] WANG K, LI R, MA J H, et al. Extracting keratin from wool by using L-cysteine[J]. Green Chemistry, 2016,18(2):476-481.
[34] 赵明宇, 刘海辉, 王学晨, 等. 角蛋白/多壁碳纳米管复合纤维的制备[J]. 纺织学报, 2017,38(2):21-25.
ZHAO Mingyu, LIU Haihui, WANG Xuechen, et al. Preparation of keratin/multi-walled carbon nanotubes composite fibers[J]. Journal of Textile Research, 2017,38(2):21-25.
[35] LAWRENCE B D, OMENETTO F, CHUI K, et al. Processing methods to control silk fibroin film biomaterial features[J]. Journal of Materials Science, 2008,43(21):6967-6985.
[36] HA S W, TONELLI A E, HUDSON S M. Structural studies of bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning[J]. Biomacromolecules, 2005,6(3):1722-1731.
doi: 10.1021/bm050010y pmid: 15877399
[37] NAM J, PARK Y H. Morphology of regenerated silk fibroin: effects of freezing temperature, alcohol addition, and molecular weight[J]. Journal of Applied Polymer Science, 2001,81(12):3008-3021.
doi: 10.1002/(ISSN)1097-4628
[38] NOGUEIRA G M, DEMORAES M A, RODAS A C D, et al. Hydrogels from silk fibroin metastable solution: formation and characterization from a biomaterial perspective[J]. Materials Science and Engineering: C, 2011,31(5):997-1001
doi: 10.1016/j.msec.2011.02.019
[39] LU Q, HU X, WANG X, et al. Water-insoluble silk films with silk I structure[J]. Acta Biomaterialia, 2010,6(4):1380-1387.
doi: 10.1016/j.actbio.2009.10.041
[40] MING J, ZUO B. Silk I structure formation through silk fibroin self-assembly[J]. Journal of Applied Polymer Science, 2012,125(3):2148-2154.
doi: 10.1002/app.36354
[1] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[2] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan / polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[3] LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41.
[4] SONG Guangzhou, TU Fangfang, DING Mengyao, DAI Mengnan, YIN Yin, DONG Fenglin, WANG Jiannan. Negatively enhanced modification of silk fibroin and its load ability to calcitonin gene-related peptide [J]. Journal of Textile Research, 2020, 41(12): 7-12.
[5] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[6] CHEN Kang, JIANG Quan, JI Hong, ZHANG Yang, SONG Minggen, ZHANG Yumei, WANG Huaping. Temperature related creep rupture mechanism of high-tenacity polyester industrial fiber [J]. Journal of Textile Research, 2020, 41(11): 1-9.
[7] WANG Shudong, MA Qian, WANG Ke, QU Caixin, QI Yu. Structure and biocompatibility of silk fibroin / gelatin blended hydrogels [J]. Journal of Textile Research, 2020, 41(11): 41-47.
[8] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[9] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber#br# [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[10] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel / polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[11] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[12] LIU Xi, WANG Dong, ZHANG Liping, LI Min, FU Shaohai. Effect of low refractive resin on structure and properties of spun-dyed viscose fibers [J]. Journal of Textile Research, 2020, 41(07): 9-14.
[13] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[14] GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122.
[15] SUN Guangdong, HUANG Yi, SHAO Jianzhong, FAN Qinguo. Blue light initiated photocrosslinking of silk fibroin hydrogel [J]. Journal of Textile Research, 2020, 41(04): 64-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!