Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (04): 64-71.doi: 10.13475/j.fzxb.20190700708
• Dyeing and Finishing & Chemicals • Previous Articles Next Articles
SUN Guangdong1, HUANG Yi1(), SHAO Jianzhong1, FAN Qinguo2
CLC Number:
[1] | 王宗乾, 杨海伟, 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018,39(4):69-76. |
WANG Zongqian, YANG Haiwei, WANG Dengfeng. Influence of degumming on solution of silk fiber and property of fibroin[J]. Journal of Textile Research, 2018,39(4):69-76. | |
[2] | KUNDU S. Silk biomaterials for tissue engineering and regenerative medicine[M]. Cambridge: Woodhead Publishing, 2014: 2-15. |
[3] | SUZUKI S, CHIRILA T V, EDWARDS G A. Characterization of Bombyx mori and Antheraea pernyi silk fibroins and their blends as potential biomate-rials[J]. Progress in Biomaterials, 2016,5(3/4):193-198. |
[4] | 陈芳芳, 闵思佳, 田莉. 交联丝素凝胶制备条件的分析[J]. 纺织学报, 2006,27(10):1-5. |
CHEN Fangfang, MIN Sijia, TIAN Li. Analysis of preparing conditions of cross-linked fibroin gel[J]. Journal of Textile Research, 2006,27(10):1-5. | |
[5] | CHEN D, YIN Z, WU F, et al. Orientational behaviors of silk fibroin hydrogels[J]. Journal of Applied Polymer Science, 2017.DOI: 10.1002/app.45050. |
[6] | KAPOOR S, KUNDU S C. Silk protein-based hydrogels: promising advanced materials for biomedical applications[J]. Acta Biomaterialia, 2016,31:17-32. |
[7] |
BAI S, ZHANG X, LU Q, et al. Reversible hydrogel-solution system of silk with high beta-sheet content[J]. Biomacromolecules, 2014,15(8):3044-3051.
doi: 10.1021/bm500662z pmid: 25056606 |
[8] | MALLEPALLY R R, MARIN M A, MCHUGH M A. CO2-assisted synjournal of silk fibroin hydrogels and aerogels[J]. Acta Biomaterialia, 2014,10(10):4419-4424. |
[9] | KUNDU J, POOLE-WARREN L A, MARTENS P, et al. Silk fibroin/poly (vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs[J]. Acta Biomaterialia, 2012,8(5):1720-1729. |
[10] | WANG X, KLUGE J, LEISK G G, et al. Sonication-induced gelation of silk fibroin for cell encapsula-tion[J]. Biomaterials, 2008,29(8):1054-1064. |
[11] |
KIM U J, PARK J Y, LI C M, et al. Structure and properties of silk hydrogels[J]. Biomacromolecules, 2004,5(3):786-792.
pmid: 15132662 |
[12] | ELLIOTT W H, BONANI W, MANIGLIO D, et al. Silk hydrogels of tunable structure and viscoelastic properties using different chronological orders of genipin and physical cross-linking[J]. ACS Applied Materials & Interfaces, 2015,22(7):12099-12108. |
[13] | TADDEI P, CHIONO V, ANGHILERI A, et al. Silk fibroin/gelatin blend films crosslinked with enzymes for biomedical applications[J]. Macromolecular Bioscience, 2013,13(11):1492-1510. |
[14] |
BURDICK J, HOLLAND C, KAPLAN D, et al. ACS biomaterials science and engineering, editorial: first anniversary[J]. ACS Biomaterials Science & Engineering, 2016,2(2):141.
doi: 10.1021/acsbiomaterials.5b00560 pmid: 33418628 |
[15] | KURLAND N E, DEY T, WANG C, et al. Silk protein lithography as a route to fabricate sericin microarchitectures[J]. Advanced Materials, 2014,26(26):4431-4437. |
[16] | RYU S, KIM H H, PARK Y H, et al. Dual mode gelation behavior of silk fibroin microgel embedded poly (ethylene glycol) hydrogels[J]. Journal of Materials Chemistry B, 2016(4):4574-4584. |
[17] |
WOLLENSAK G, SPOERL E, SEILER T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking[J]. Journal of Cataract & Refractive Surgery, 2003,29(9):1780-1785.
doi: 10.1016/s0886-3350(03)00407-3 pmid: 14522301 |
[18] | APPLEGATE M B, PARTLOW B P, COBURN J, et al. Silk fibroin: photocrosslinking of silk fibroin using riboflavin for ocular prostheses[J]. Advanced Materials, 2016,28(12):2464-2464. |
[19] | TESHIMA W, NOMURA Y, TANAKA N, et al. ESR study of camphorquinone/amine photoinitiator systems using blue light-emitting diodes[J]. Biomaterials, 2003,24(12):2097-2103. |
[20] | WANG C, WANG L, YI H, et al. Fabrication of reactive pigment composite particles for blue-light curable inkjet printing of textiles[J]. RSC Advances, 2017,57(7):36175-36184. |
[21] | CUI K J, ZHU C Z, ZHANG H, et al. Blue laser diode-initiated photosensitive resins for 3D printing[J]. Journal of Materials Chemistry C, 2017(5):12035-12038. |
[22] | GRASSINO S B, STRUMIA M C, COUVE J, et al. Photoactive films obtained from methacrylo-urethanes tannic acid-based with potential usage as coating materials: analytic and kinetic studies[J]. Progress in Organic Coatings, 1999,37(1/2):39-48. |
[23] | COOK W D, CHEN F. Enhanced photopolymerization of dimethacrylates with ketones, amines, and iodonium salts: the CQ system[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2011,49(23):5030-5041. |
[24] | JAKUBIAK J, ALLONAS X, FOUASSIER J P, et al. Camphorquinone-amines photoinitating systems for the initiation of free radical polymerization[J]. Polymer, 2003,44(18):5219-5226. |
[25] |
KOLLER T, SCHUMACHER S, SEILER T. Riboflavin/ultraviolet a crosslinking of the paracentral cornea[J]. Cornea, 2013,32(2):165-168.
pmid: 23187160 |
[26] |
HAN S, LIN C C. Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoini-tiator[J]. Macromolecular Rapid Communications, 2013,34(3):269-273.
doi: 10.1002/marc.201200605 pmid: 23386583 |
No related articles found! |
|