Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (04): 106-111.doi: 10.13475/j.fzxb.20180804506

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Study on enhancement of hydrophobicity treatment of cotton fabrics using silica sol

TAN Lin, SHI Yidong(), ZHOU Wenya   

  1. College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
  • Received:2018-08-15 Revised:2020-01-15 Online:2020-04-15 Published:2020-04-27
  • Contact: SHI Yidong E-mail:shiyidong@scu.edu.cn

Abstract:

In order to obtain the super hydrophobicity in cotton fabrics through an environmentally friendly approach, the present study applied tetraethylorthosilicate(TEOS) as precursor, ethanol and water as the binary solvent, and successfully obtained the pre-condenser of silica sol. The cotton fabrics with the pre-condenser of silica sol, and the effect of finishing parameters was systematically studied on the hydrophobicity of fabrics, especially the correlation between the hydrophobicity and these parameters, including preparation of pre-condenser, addition of silane coupling agents and drying under low temperature. Results show that both rough surface derived from SiO2 nanoparticles on the fabric and hydrophobic aliphatic hydrocarbon chain bound to the fabric surface endows the fabric good hydrophobicity. The optimal parameters used to obtain fabric hydrophobicity in this research is as follows: TEOS(0.1 mol), ethanol(0.9 mol), water(0.8 mol), dipping and rolling with silica sol twice, and dipping and rolling with hexadecyl trimethoxysilane in ethanol. Under such optimal process, the water contact angle of cotton fabric reached to 152.1°, and the mechanical property is also improved.

Key words: silica sol, cotton fabric, polyster fabric, hydrophobicity, hydrophobic finishing, SiO2 nanoparticle

CLC Number: 

  • TS195.5

Tab.1

Effect of pH regulator on water contact angle of fabric"

pH值调节剂 pH值 水接触角/(°)
棉织物 涤纶织物
未整理 0.0 120.4
盐酸 3 130.4 120.9
醋酸 4~5 108.6 119.8
氨水 10~11 116.5 121.6

Tab.2

Effect of counter flow on water contact angle of fabric"

整理方法 水接触角/(°)
棉织物 涤纶织物
未整理 0.0 120.4
未经回流 120.6 121.4
回流 127.0 135.6

Tab.3

Uniform design of silica sol preparation"

试验
序号
TEOS的
X1/
mol
乙醇的
X2/
mol
水的量
X3/
mol
温度
X4/
时间
X5/
h
水接触
Y/
(°)
1 0.025 0.4 0.4 60 8 128.25
2 0.050 0.6 0.7 45 7 142.60
3 0.075 0.8 0.3 65 6 147.88
4 0.100 0.3 0.6 50 5 140.43
5 0.125 0.5 0.2 70 4 134.64
6 0.150 0.7 0.5 55 3 138.74
7 0.175 0.9 0.8 75 9 131.37

Tab.4

Effect of type and dosage of additives on hydrophobicity"

硅烷偶联剂 水接触角/(°)
名称 质量分数/% 棉织物 涤纶织物
2 121.6 118.8
HDTMS 4 133.3 121.5
6 124.0 111.8
8 115.9 116.6
2
DOTMS 4 102.3 108.6
6 127.7 96.0
8 110.1 110.7
2 119.9 118.3
OTES 4 106.7 115.5
6 122.2 101.3
8 108.1 120.6

Tab.5

Effect of one and two step finishing on hydrophobicity"

整理方法 水接触角/(°)
棉织物 涤纶织物
未整理 0.0 120.4
一步法 117.5 121.0
二步法 130.4 123.9

Tab.6

Effect of drying temperature on hydrophobicity and apparent colour"

烘干温度/℃ 水接触角/(°) 表观颜色
55 152.1 正常
75 149.2 正常
95 147.1 发黄
115 131.8 发黄

Fig.1

SEM images of cotton fabrics before (a) and after (b) finishing(×1 000)"

Fig.2

SEM images of PET fabrics before and after finishing. (a) PET fabric (×10 000); (b) SiO2 loaded PET fabric (×5 000)"

Fig.3

FT-IR sepctra of cotton (a) and PET (b) fabrics before and after modification"

Tab.7

Physical and mechanical properties of cotton fabrics before and after modification"

样品名称 白度/% 断裂强力/N 透气性/
(L·m-2·s-1)
经向 纬向
原棉织物 77.1 266 160 3 526.20
SiO2整理棉织物 81.3 298 175 1 620.89
[1] 高雪峰, 江雷. 天然超疏水生物表面研究的新进展[J]. 物理, 2006,35(7):559-564.
GAO Xuefeng, JIANG Lei. Recent studies of natural superhydophobic bio-surfaces[J]. Physics, 2006,35(7):559-564.
[2] 郑黎俊, 乌学东, 楼增, 等. 表面微细结构制备超疏水表面[J]. 科学通报, 2004,49(17):1691-1699.
ZHENG Lijun, WU Xuedong, LOU Zeng, et al. Preparation of superhydrophobic surface by surface microstructure[J]. Chinese Science Bulletin, 2004,49(17):1691-1699.
[3] 陈荣圻. PFOS与PFOA替代品趋向新进展[J]. 印染助剂, 2012,29(12):1-10.
CHEN Rongqi. Development and trend of substitutes to PFOS and PFOA[J]. Textile Auxiliaries, 2012,29(12):1-10.
[4] XU Lihui, ZHUANG Wei, XU Bi, et al. Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization[J]. Applied Surface Science, 2011,257:5491-5498.
[5] TEXTOR Torsten, MAHLTIG Boris. A sol-gel based surface treatment for preparation of water repellent antistatic textiles[J]. Applied Surface Science, 2010,256:1668-1674.
[6] MANATUNGA D C, SILVA R M D, SILVA K M N D. Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials[J]. Applied Surface Science, 2016,360:777-788.
[7] SHEN Keke, YU Miao, LI Qianqian, et al. Synjournal of a fluorine-free polymeric water-repellent agent for creation of superhydrophobic fabrics[J]. Applied Surface Science, 2017,426:694-703.
[8] 余锡宾, 吴虹. 正硅酸乙酯的水解, 缩合过程研究[J]. 无机材料学报, 1996,11(4):703-707.
YU Xibin, WU Hong. Studies oil the hydrolysis and polycondensation process of TEOS[J]. Journal of Inorganic Materials, 1996,11(4):703-707.
[9] 郑文芝. 二氧化硅气凝胶研制及其结构性能研究[D]. 广州:华南理工大学, 2010: 45-48.
ZHENG Wenzhi. The preparation of silica aerogels and their structures and properties[D]. Guangzhou:South China University of Technology, 2010: 45-48.
[10] JEONG A Y, KOO S M, KIM D P. Characterization of hydrophobic SiO2 powders prepared by surface modification on wet gel[J]. Journal of Sol-Gel Science and Technology, 2000,19(1-3):483-487.
[11] PIPATCHANCHAI T, SRIKULKIT K. Hydrophobicity modification of woven cotton fabric by hydrophobic fumed silica coating[J]. Journal of Sol-Gel Science and Technology, 2007,44(2):119-123.
[12] BERNARDES A A, EMANUELLI C A, COFFERRI P, et al. Octadecyl-modified silicas obtained by non-hydrolytic condensation of a C18-hybrid silica sol on a silica surface[J]. Journal of Non-Crystalline Solids, 2017. DOI: 10.1016/j.jnoncrysol.2017.03.033.
pmid: 21286235
[1] HOU Wenshuang, MIN Jie, JI Feng, ZHANG Jianxiang, SU Meng, HE Ruixian. Influence of fabric tightness and anti-crease finishing on wrinkle recovery of pure cotton woven fabrics [J]. Journal of Textile Research, 2021, 42(01): 118-124.
[2] ZENG Fanxin, QIN Zongyi, SHEN Yueying, CHEN Yuanyu, HU Shuo. Preparation and flame retardant properties of self-extinguishing cotton fabrics by spray-assisted layer-by-layer self-assembly technology [J]. Journal of Textile Research, 2021, 42(01): 103-111.
[3] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[4] WANG Bo, FAN Lihua, YUAN Yun, YIN Yunjie, WANG Chaoxia. Preparation and electric storage performance of stretchable polypyrrole / cotton knitted fabric [J]. Journal of Textile Research, 2020, 41(10): 101-106.
[5] LIU Guojin, SHI Feng, CHEN Xinxiang, ZHANG Guoqing, ZHOU Lan. Preparation of polyurethane / phase change wax functional finishing agents for heat storage and temperature regulation and their applications on cotton fabrics [J]. Journal of Textile Research, 2020, 41(07): 129-134.
[6] CHENG Shijie, WANG Chenyang, ZHANG Hongwei, ZUO Danying. Effect of boron nitrogen doped carbon dots on ultraviolet-protection of cotton fabrics [J]. Journal of Textile Research, 2020, 41(06): 93-98.
[7] ZHOU Qingqing, CHEN Jiayi, QI Zhenming, CHEN Weijian, SHAO Jianzhong. Preparation and characterization of flame retardant and antibacterial cotton fabric [J]. Journal of Textile Research, 2020, 41(05): 112-120.
[8] WEI Tengxiang, LI Min, PENG Hongyun, FU Shaohai. Relationship between open-width mercerization condition and loop structure of weft plain-knitted cotton fabrics [J]. Journal of Textile Research, 2020, 41(04): 98-105.
[9] ZHAO Bing, HUANG Xiaocui, QI Ning, ZHONG Zhou, CHE Mingguo, GE Liangliang. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond [J]. Journal of Textile Research, 2020, 41(03): 188-196.
[10] GAO Simeng, WANG Hongbo, DU Jinmei, WANG Wencong. Synthesis of polybetaine antibacterial agent and its applications in cotton textiles finishing [J]. Journal of Textile Research, 2020, 41(02): 89-94.
[11] YI Ling, ZHANG He, FU Xin, LI Wen. Preparation and far-infrared emission performance of graphene based zirconium / titanium composites modified cotton fabrics [J]. Journal of Textile Research, 2020, 41(01): 102-109.
[12] LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, CHEN Guoqiang, XING Tieling. Preparation and electrochemical properties of MnO2 / graphene / cotton fabric composite electrode [J]. Journal of Textile Research, 2020, 41(01): 96-101.
[13] CHEN Ying, ZHOU Shuang, WEI Tianjing, FANG Haoxia, LI Yufei. Preparation and properties of polypyrrole composite fabric by soft template process [J]. Journal of Textile Research, 2019, 40(12): 93-97.
[14] CUI Yifan, HOU Wei, ZHOU Qianxi, YAN Jun, LU Yanhua, HE Tingting. Influence of silk sericin temperature sensitive hydrogel on properties of cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 74-78.
[15] SUN Yufa, ZHOU Xiangdong. Synthesis and characterization of novel phosphorous and nitrogen-containing flame retardant for cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 79-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!