[1] |
ZATORSKI W, BRZOZOWSKI ZK, KOLBRECKI A. New developments in chemical modification of fire-safe rigid polyurethane foams[J]. Polymer Degradation Stability, 2008,93(11):2071-2076.
|
[2] |
LEVCHIK S V, WEIL E D. Thermal decomposition, combustion and fire-retardancy of polyurethanes: a review of the recent literature[J]. Polymer International, 2010,53(12):1901-1929.
|
[3] |
CHATTOPADHYAY D K, WEBSTER D C. Thermal stability and flame retardancy of polyurethanes[J]. Progress in Polymer Science, 2009,34(10):1068-1133.
|
[4] |
SONNENSCHEIN M F, WENDT B L. Design and formulation of soybean oil derived flexible polyurethane foams and their underlying polymer structure/property relationships[J]. Polymer, 2013,54(10):2511-2520.
|
[5] |
USTA N. Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter[J]. J Appl Polym Sci, 2012,124(4):3372-3382.
|
[6] |
KULESZA K, PIELICHOWSKI K. Thermal decomposition of bisphenol a-based polyetherurethanes blown with pentane: part II: influence of the novel NaH2PO4/NaHSO4 flame retardant system[J]. Journal of Analytical & Applied Pyrolysis, 2006,76(1):249-253.
|
[7] |
KONIG A, KROKE E. Flame retardancy working mechanism of methyl-DOPO and MPPP in flexible polyurethane foam[J]. Fire & Materials, 2012,36(1):1-15.
|
[8] |
CHEN M J, SHAO Z B, WANG X L, et al. Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen-phosphorus flame retardant[J]. Ind Eng Chem Res, 2012,51(29):9769-9776.
|
[9] |
宋艳, 许亮, 李锦春, 等. 新型磷氮型阻燃剂的制备及其阻燃聚氨酯泡沫塑料[J]. 复合材料学报, 2016,33(11):2461-2467.
|
|
SONG Yan, XU Liang, LI Jinchun, et al. Preparation of new phosphorus and nitrogen flame retardants and flame retardant polyurethane foam plastics[J]. Acta Materiae Compositae Sinica, 2016,33(11):2461-2467.
|
[10] |
卢林刚, 徐晓楠, 王大为, 等. 新型无卤膨胀阻燃聚丙烯的制备及阻燃性能[J]. 复合材料学报, 2013,30(1):83-89.
|
|
LU Lingang, XU Xiaonan, WANG Dawei, et al. Preparation and flame retardant properties of new halogen-free expanded flame retardant polypropy-lene[J]. Acta Materiae Compositae Sinica, 2013,30(1):83-89.
|
[11] |
邓婷婷, 张光先, 代方银, 等. 对位芳纶磷酸化表面改性[J]. 纺织学报, 2015,36(11):12-19.
|
|
DENG Tingting, ZHANG Guangxian, DAI Fangyin, et al. Surface modification of para-aramid fiber by phosphoric acid[J]. Journal of Textile Research, 2015,36(11):12-19.
|
[12] |
CHEN X, WANG W, JIAO C. A recycled environmental friendly flame retardant by modifying para-aramid fiber with phosphorus acid for thermoplastic polyurethane elastomer[J]. J Hazard Mat, 2017,331:257-264.
|
[13] |
CIECIERSKA E, JURCZYK-KOWALSKA M, BAZARNIK P, et al. Flammability, mechanical properties and structure of rigid polyurethane foams with different types of carbon reinforcing materials[J]. Composite Structures, 2016,140:67-76.
|
[14] |
温中印, 曹建鹏, 卞雷雷, 等. DMMP、TCPP与EG对硬质聚氨酯泡沫阻燃协同效应及机理探讨[J]. 塑料工业, 2016,44(4):111-115.
|
|
WEN Zhongxin, CAO Jianpeng, BIAN Leilei, et al. Synergistic effect and mechanism of DMMP, TCPP and EG on flame retardant of rigid polyurethane foam[J]. Plastics Industry, 2016,44(4):111-115.
|
[15] |
XU W, LIU L, WANG S, et al. Synergistic effect of expandable graphite and aluminum hypophosphite on flame-retardant properties of rigid polyurethane foam[J]. Journal of Applied Polymer Science, 2015,132(47). DOI: 10.1002/APP.42842.
|
[16] |
卢林刚, 陈英辉, 赵瑾, 等. DOPOMPC-APP-MWCNTs协同阻燃环氧树脂的制备[J]. 复合材料学报, 2015,32(1):101-107.
|
|
LU Lingang, CHEN Yinghui, ZHAO Jin, et al. Preparation of DOPOMPC-APP-MWCNTs as a synergistic flame retardant epoxy resin[J]. Acta Materiae Compositae Sinica, 2015,32(1):101-107.
|
[17] |
AFROUGHSABET V, BIOLZI L, OZBAKKALOGLU T. High-performance fiber-reinforced concrete: a review[J]. Journal of Materials Science, 2016,51(14):6517-6551.
|
[18] |
ZHANG C G, WANG H L, QIANG L I, et al. Preparation of new insulation formula of aramid fiber and NBR system[J]. Journal of Solid Rocket Technology, 2008,31(6):635-641.
|
[19] |
AKATO K, BHAT G. 10-High performance fibers from aramid polymers[J]. Structure and Properties of High-Performance Fibers, 2017,15:245-266.
|
[20] |
许黛芳, 俞科静, 钱坤, 等. 芳纶短纤和浆粕增强聚氨酯泡沫的结构和性能研究[J]. 宇航材料工艺, 2018(2):29-34.
|
|
XU Daifang, YU Kejing, QIAN Kun, et al. Microstructure and properties of aramid-fiber and aramid-pulp reinforced rigid polyurethane foams[J]. Aerospace Materials Technology, 2018(2):29-34.
|
[21] |
CHEN J, ZHU Y, NI Q, et al. Surface modification and characterization of aramid fibers with hybrid coating[J]. Applied Surface Science, 2014,321:103-108.
|
[22] |
GU R, YU J, HU C, et al. Surface treatment of para-aramid fiber by argon dielectric barrier discharge plasma at atmospheric pressure[J]. Applied Surface Science, 2012,258(24):10168-10174.
|
[23] |
XI Min, LI Yuliang, SHANG Shuyong. Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line process-ing[J]. Surface & Coatings Technology, 2008,202(24):6029-6033.
|
[24] |
XU Daifang, YU Kejing, QIAN Kun. Effect of tris(1-chloro-2-propyl)phosphate and modified aramid fiber on cellular structure, thermal stability and flammability of rigid polyurethane foams[J]. Polymer Degradation & Stability, 2017,144:207-220.
|
[25] |
HOOSHANGI Z, FEGHHI S A H, SHEIKH N. The effect of electron-beam irradiation and halogen-free flame retardants on properties of poly butylene terephthalate[J]. Radiation Physics and Chemistry, 2015,108:54-59.
|
[26] |
BIAN X C, TANG J H, LI Z M, et al. Dependence of flame-retardant properties on density of expandable graphite filled rigid polyurethane foam[J]. J Appl Polym Sci, 2007,104(5):3347-3355.
|
[27] |
YANG H, WANG X, SONG L, et al. Aluminum hypophosphite in combination with expandable graphite as a novel flame retardant system for rigid polyurethane foams[J]. Polymers for Advanced Technologies, 2015,25(9):1034-1043.
|
[28] |
LEI L, ZHENGZHOU W. Synergistic effect of nano magnesium amino-tris-(methylenephosphonate) and expandable graphite on improving flame retardant, mechanical and thermal insulating properties of rigid polyurethane foam[J]. Materials Chemistry and Physics, 2018,219:318-327.
|
[29] |
HU X, CHENG W, NIE W, et al. Flame retardant, thermal, and mechanical properties of glass fiber/nanoclay reinforced phenol-urea-formaldehyde foam[J]. Polymer Composites, 2016,37:2323-2332.
doi: 10.1002/pc.23411
|
[30] |
LI X, WANG Z, WU L. Preparation of a silica nanospheres/graphene oxide hybrid and its application in phenolic foams with improved mechanical strengths, friability and flame retardancy[J]. RSC Adv, 2015(5):99907-99913.
|