Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (08): 121-127.doi: 10.13475/j.fzxb.20190402507

• Machinery & Accessories • Previous Articles     Next Articles

Prediction of loom efficiency based on BP neural network and its improved algorithm

ZHANG Xiaoxia1, LIU Fengkun2, MAI Wei1, MA Chongqi1()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. China Textile Information Center, Beijing 100020, China
  • Received:2019-04-08 Revised:2020-05-09 Online:2020-08-15 Published:2020-08-21
  • Contact: MA Chongqi E-mail:tjmcq@tiangong.edu.cn

Abstract:

In order to predict the loom efficiency more accurately in the weaving workshop of textile mills, three models, i.e. BP neural network, principal component analysis combined with BP neural network(PCA-BP) and genetic algorithm modified BP neural network model (GA-BP), were used to predict the loom efficiency. At the same time, the prediction results of the GA-BP were compared with that of the BP neural network and PCA-BP neural network. The results show that the GA-BP has the best fitting degree to the original data, the correlation coefficient is 0.946 87, which is 6.42% higher than BP and 2.61% higher than PCA-BP. The average absolute errors between the simulated output value and the expected loom stoppage values over 100 000 weft insertions are 0.341 2, 0.303 1 and 0.234 1, respectively, for GA-BP, PCA-BP and BP models, corresponding to error percentages 8.63%, 7.67% and 5.92%. The average errors between the predicted and the expected values of the loom efficiency with different network models are 3.010 9, 2.688 4 and 2.118 9, respectively, with error percentages of 3.51%, 3.13%, 2.47%. The order of prediction accuracy of the three models is GA-BP, PCA-BP and BP.

Key words: BP neural network, genetic algorithm, principal component analysis, prediction model, loom efficiency prediction

CLC Number: 

  • TS104.2

Fig.1

Network topology"

Fig.2

R corresponding to number of nodes in different hidden layers"

Fig.3

Improvement of BP neural network flow chart by genetic algorithms"

Fig.4

GA-BP neural network output values of training (a), validation(b), testing(c) and overall(d) data"

Fig.5

Three network simulation output values. (a)BP neural network output; (b)PCA-BP neural network output; (c) Sufficiency curve of GA-BP"

Tab.1

Error between simulation value and expected value of 100 000 weft warp stop in different networks"

验证样本
序号
期望值 BP PCA-BP GA-BP
仿真值1 误差1 仿真值2 误差2 仿真值3 误差3
1 4.42 4.384 2 0.035 8 3.976 4 0.443 6 4.412 0 0.008 0
2 5.91 5.323 3 0.586 7 6.180 8 0.270 8 5.206 6 0.703 4
3 6.61 6.337 0 0.273 0 6.351 8 0.258 2 6.421 4 0.188 6
4 1.81 2.042 9 0.232 9 1.674 5 0.135 5 1.807 8 0.002 2
5 2.45 1.646 8 0.803 2 2.588 0 0.138 0 2.364 8 0.085 2
6 3.96 3.522 1 0.437 9 3.516 5 0.443 5 4.371 6 0.411 6
7 1.10 1.593 8 0.493 8 1.610 3 0.510 3 1.358 3 0.258 3
8 1.69 1.857 7 0.167 7 2.271 7 0.581 7 1.751 8 0.061 8
9 1.98 1.857 7 0.122 3 2.271 7 0.291 7 1.751 8 0.228 2
10 6.77 5.882 2 0.887 8 6.877 0 0.107 0 6.194 4 0.575 6
11 6.61 6.717 6 0.107 6 6.685 6 0.075 6 6.415 1 0.194 9
12 2.73 2.639 4 0.090 6 2.167 6 0.562 4 2.437 4 0.292 6
13 1.64 1.917 9 0.277 9 1.567 4 0.072 6 1.878 3 0.238 3
14 3.45 3.095 9 0.354 1 3.479 5 0.029 5 3.256 9 0.193 1
15 5.52 5.406 7 0.113 3 5.124 4 0.395 6 5.507 0 0.013 0
16 5.28 5.045 1 0.234 9 5.490 0 0.210 0 5.275 6 0.004 4
17 5.19 5.454 3 0.264 3 4.745 1 0.444 9 5.175 2 0.014 8
18 4.00 3.342 9 0.657 1 4.484 6 0.484 6 3.260 5 0.739 5
平均误差 0.341 2 0.303 1 0.234 1
误差百分率/% 8.63 7.67 5.92

Tab.2

Error between simulation value and expected value of loom efficiency in different networks"

验证样本
序号
期望值 BP PCA-BP GA-BP
仿真值1 误差1 仿真值2 误差2 仿真值3 误差3
1 91.93 88.504 0 3.426 0 90.006 8 1.923 2 94.073 9 2.143 9
2 79.48 76.990 0 2.490 0 85.418 5 5.938 5 76.359 6 3.120 4
3 76.38 77.141 8 0.761 8 77.747 7 1.367 7 75.495 9 0.884 1
4 93.41 88.099 5 5.310 5 85.948 9 7.461 1 92.445 8 0.964 2
5 81.02 88.169 2 7.149 2 79.229 8 1.790 2 85.757 5 4.737 5
6 78.88 77.702 4 1.177 6 79.547 8 0.667 8 80.209 5 1.329 5
7 89.90 87.943 2 1.956 8 89.116 3 0.783 7 90.230 6 0.330 6
8 85.83 88.259 7 2.429 7 86.305 4 0.475 4 88.629 8 2.799 8
9 91.29 88.259 7 3.030 3 86.305 4 4.984 6 88.629 8 2.660 2
10 77.47 81.749 9 4.279 9 79.337 2 1.867 2 80.084 9 2.614 9
11 91.63 88.011 9 3.618 1 88.622 6 3.007 4 90.704 6 0.925 4
12 88.17 88.619 3 0.449 3 86.600 5 1.569 5 89.649 2 1.479 2
13 88.81 88.349 7 0.460 3 85.620 3 3.189 7 88.014 9 0.795 1
14 87.57 82.818 7 4.751 3 86.269 0 1.301 0 82.425 0 5.145 0
15 82.33 77.342 4 4.987 6 85.298 4 2.968 4 83.573 5 1.243 5
16 87.01 86.629 4 0.380 6 86.856 1 0.153 9 87.300 5 0.290 5
17 88.11 82.447 3 5.662 7 89.289 8 1.179 8 92.079 7 3.969 7
18 84.48 82.606 1 1.873 9 92.242 3 7.762 3 81.772 6 2.707 4
平均误差 3.010 9 2.688 4 2.118 9
误差百分率/% 3.51 3.13 2.47
[1] RAMESH M C, RAJAMANICKAM R, JAYARAMAN S. The prediction of yarn tensile properties by using artificial neural networks[J]. Journal of The Textile Institute, 1995,86:459-469.
doi: 10.1080/00405009508658772
[2] 倪红, 潘永惠. 基于BP神经网络的织物斜向弯曲性能的预测[J]. 纺织学报, 2009,30(2):48-51.
NI Hong, PAN Yonghui. Prediction of diagonal bending performance of fabrics based on BP neural network[J]. Journal of Textile Research, 2009,30(2):48-51.
[3] 董旭烨, 李竹君. 精益生产工艺提高喷气织机的织造效率[J]. 纺织导报, 2015 (10):97-100.
DONG Xuye, LI Zhujun. Lean production technology improves weaving efficiency of air-jet looms[J]. China Textile Leader, 2015(10):97-100.
[4] 王少芳, 蔡金锭, 刘庆珍. 基于改进GA-BP混合算法的电力变压器故障诊断[J]. 电网技术, 2004,28(4):30-33.
WANG Shaofang, CAI Jinding, LIU Qingzhen. Power transformer fault diagnosis based on improved GA-BP hybrid algorithm[J]. Power Grid Technology, 2004,28(4):30-33.
[5] 孙晓刚, 原桂彬, 戴景民. 基于遗传神经网络的多光谱辐射测温法[J]. 光谱学与光谱分析, 2007 (2):213-216.
pmid: 12961851
SUN Xiaogang, YUAN Guibin, DAI Jingmin. Multispectral radiation thermometry based on genetic neural network[J]. Spectroscopy and Spectral Analysis, 2007(2):213-216.
pmid: 12961851
[6] 司学锋. 基于聚类的BP神经网络在织物染色计算机配色中的应用研究[D]. 青岛:青岛大学, 2009: 32-36.
SI Xuefeng. Application of BP neural network based on clustering in computer color matching of fabric dyeing[D]. Qingdao: Qingdao University, 2009: 32-36.
[7] LUO Jianfei, LIN Weitie, CAI Xiaolong, et al. Optimization of nitrobacterial fermentation medium based on neural network and genetic algorithms[J]. Chinese Journal of Chemical Engineering, 2012,20(5):950-957.
[8] FENG Yan, CHEN Yimin. Rectification of magnetic force tracker using neural network inaugmented reality system[J]. Journal of Shanghai University(English Edition), 2006(5):431-435.
doi: 10.1007/s11741-006-0086-6
[9] 周松林, 茆美琴, 苏建徽. 基于主成分分析与人工神经网络的风电功率预测[J]. 电网技术, 2011,35(9):128-132.
ZHOU Songlin, MAO Meiqin, SU Jianhui. Wind power prediction based on principal component analysis and artificial neural network[J]. Power System Technology, 2011,35(9):128-132.
[10] 张文霖. 主成分分析在SPSS中的操作应用[J]. 市场研究, 2005(12):31-34.
ZHANG Wenlin. Operational application of principal component analysis in SPSS[J]. Market Research, 2005(12):31-34.
[11] 雷彦森. 遗传算法优化的BP神经网络在多模式集成预报的应用研究[D]. 南京:南京信息工程大学, 2018: 47-54.
LEI Yansen. Application of BP neural network optimized by genetic algorithm in multi-model integrated forecasting[D]. Nanjing: Nanjing University of Information Science & Technology, 2018: 47-54.
[12] 王冰玉, 孙威江, 黄艳, 等. 基于遗传算法的安溪铁观音品质快速评价研究[J]. 光谱学与光谱分析, 2017,37(4):1100-1104.
WANG Bingyu, SUN Weijiang, HUANG Yan, et al. Rapid evaluation of Tieguanyin Anxi based on genetic algorithm[J]. Spectroscopy and Spectral Analysis, 2017,37(4):1100-1104.
[13] 李勇, 陈晓川, 汪军, 等. 基于BP神经网络的原棉短纤指数预测模型[J]. 纺织学报, 2014,35(11):35-39.
LI Yong, CHEN Xiaochuan, WANG Jun, et al. Raw cotton staple fiber index prediction model based on BP neural network[J]. Journal of Textile Research, 2014,35(11):35-39.
[14] 刘贵, 于伟东. 基于遗传算法和BP网络的精毛纺粗纱质量预报[J]. 纺织学报, 2009,30(5):28-33.
LIU Gui, YU Weidong. Prediction of worsted roving quality based on genetic algorithm and BP network[J]. Journal of Textile Research, 2009,30(5):28-33.
[15] 吴耀, 杨瑞峰, 郭晨霞, 等. 基于GA-BP神经网络的光纤位移传感器光强补偿研究[J]. 电光与控制, 2019,26(4):111-114.
WU Yao, YANG Ruifeng, GUO Chenxia, et al. Research on light intensity compensation of optical fiber displacement sensor based on GA-BP neural network[J]. Electronics Optic and Control, 2019,26(4):111-114.
[16] 邓伟锋, 李振璧. 基于GA优化BP神经网络的微电网蓄电池健康状态评估[J]. 电测与仪表, 2018,55(21):56-60, 85.
DENG Weifeng, LI Zhenbi. Assessment of battery health in microgrid based on GA optimized BP neural net-work[J]. Electrical Measurement and Instrument, 2018,55(21):56-60, 85.
[17] 查刘根, 谢春萍. 基于免疫遗传算法的BP神经网络在纱线条干预测上的应用[J]. 丝绸, 2019,56(2):19-26.
ZHA Liugen, XIE Chunping. Application of BP neural network based on immune genetic algorithms in yarn intervention measurement[J]. Journal of Silk, 2019,56(2):19-26.
[1] ZHANG Zhuo, CONG Honglian, JIANG Gaoming, DONG Zhijia. Polo shirt rapid style recommendation system based on interactive genetic algorithm [J]. Journal of Textile Research, 2021, 42(01): 138-144.
[2] LI Liang, NI Junfang. Automatic generation algorithm for pattern processing codes of quilting machines [J]. Journal of Textile Research, 2020, 41(11): 162-167.
[3] XIE Ziang, DU Jinsong, ZHAO Guohua. Adaptive dynamic scheduling of garment hanging production line [J]. Journal of Textile Research, 2020, 41(10): 144-149.
[4] HUANG Zhenzhen, MOK Pikyin, WEN Lihong. Garment production line balance based on genetic algorithm and simulation [J]. Journal of Textile Research, 2020, 41(07): 154-159.
[5] ZHENG Xiaohu, BAO Jinsong, MA Qingwen, ZHOU Heng, ZHANG Liangshan. Spinning workshop collaborative scheduling method based on simulated annealing genetic algorithm [J]. Journal of Textile Research, 2020, 41(06): 36-41.
[6] MO Shuai, FENG Zhanyong, TANG Wenjie, DANG Heyu, ZOU Zhenxing. Performance optimization of elastic spindle pipe based on neural network and genetic algorithm [J]. Journal of Textile Research, 2020, 41(04): 161-166.
[7] HUANG Qianqian, LI Jun. Research progress on mechanism of human thermal sensation under ambient temperature step change [J]. Journal of Textile Research, 2020, 41(04): 188-194.
[8] HUANG Qi, ZHOU Qihong, ZHANG Qian, WANG Shaozong, FAN Wei, SUN Huifeng. Layout optimization of dip dyeing workshop based on system layout planning-genetic algorithm [J]. Journal of Textile Research, 2020, 41(03): 84-90.
[9] JIN Shoufeng, LIN Qiangqiang, MA Qiurui, ZHANG Hao. Method for detecting fluff quality of fabric surface based on BP neural network [J]. Journal of Textile Research, 2020, 41(02): 69-76.
[10] ZHANG Xujing, WANG Lichuan, CHEN Yan. Balancing optimization of garment sewing assembly line based on genetic algorithm [J]. Journal of Textile Research, 2020, 41(02): 125-129.
[11] WANG Xiaohui, LIU Yuegang, MENG Zhuo, SUN Yize. Optimization of process parameters for 3D additive screen printing based on genetic algorithm and neural network [J]. Journal of Textile Research, 2019, 40(11): 168-174.
[12] ZHOU Jie, MA Qiurui. Prediction of relationship between shoulder strap attribute and breast amplitude of sports bra by BP neural network [J]. Journal of Textile Research, 2019, 40(09): 186-191.
[13] MENG Shuo, PAN Ruru, GAO Weidong, WANG Jing'an, ZHOU Lijun. Research on weaving scheduling using main objective evolutionary genetic algorithm [J]. Journal of Textile Research, 2019, 40(08): 169-174.
[14] WAN Li, GONG Liying, JIA Minrui. Structural damage identification of intelligent composite materials based on principal component analysis [J]. Journal of Textile Research, 2019, 40(05): 53-58.
[15] ZHOU Jie, MA Qiurui. Application of BP neural network in prediction of shapewear pressure [J]. Journal of Textile Research, 2019, 40(04): 111-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!