Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (09): 167-173.doi: 10.13475/j.fzxb.20200307807

• Column: Biomedical Textile Materials and It′s Products • Previous Articles     Next Articles

Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold

PAN Lu1, CHENG Tingting1, XU Lan1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. National Engineering Laboratory for Modern Silk, Suzhou, Jiangsu 215123, China
  • Received:2020-03-30 Revised:2020-06-04 Online:2020-09-15 Published:2020-09-25
  • Contact: XU Lan E-mail:lanxu@suda.edu.cn

Abstract:

In order to improve the growth and adhesion of cells on electrospun nanofiber scaffolds, a modified electrospinning (ES) device was used to prepare polycaprolactone (PLC)/polyethylene glycol (PEG) composite nanofiber membranes (CNFMs) with large pore sizes, aiming for good biocompatibility. The influences of the composition and mass fraction of spinning solution on the morphology and properties of the CNFMs were investigated, and the optimal spinning parameters were determined. The CNFMs obtained using the modified ES under the optimal conditions were taken as tissue engineering scaffold, and the cytocompatibility of the CNFMs was compared with that of the CNFMs prepared by the traditional ES. The results show that when the blend mass ratio of PLC and PEG is 80∶20 and the mass fraction of spinning solution is 25%, the quality of PCL/PEG CNFMs with large pore sizes is the best. Moreover, compared with the PCL/PEG CNFMs obtained by the traditional ES, the PCL/PEG CNFMs with large pore sizes supply a more conducive environment for the cell growth and proliferation, and are more suitable to be used as tissue engineering scaffold materials.

Key words: electrospinning, nanofiber membranes with large pore sizes, tissue engineering scaffold, polycaprolactone, polyethylene glycol

CLC Number: 

  • TS131.9

Fig.1

Schematic of modified electrospinning device"

Fig.2

SEM images of nanofiber membranes with different mass ratios of PEG and PCL(×10 000)"

Tab.1

Diameter statistics of nanofibers with different mass ratios of PEG and PCL"

PCL与PEG的质量比 平均直径/nm 标准差/nm 置信区间/nm
30:70 187.30 82.88 ±16.24
50:50 223.14 81.45 ±15.96
70:30 306.55 135.39 ±26.54
80:20 336.40 139.66 ±27.37
90:10 364.01 295.17 ±57.85

Tab.2

Mechanical properties of nanofiber membranes with different mass ratios of PEG and PCL"

PCL与PEG的质量比 断裂强度/MPa 断裂伸长率/%
30:70 0.62 25.13
50:50 0.90 57.13
70:30 1.51 83.80
80:20 2.46 87.15
90:10 3.71 92.43

Fig.3

Morphology of nanofibers with different PCL/PEG concentrations(×10 000)"

Tab.3

Diameter statistics of nanofibers with different PCL/PEG mass fractions"

溶液质量分数/% 平均直径/nm 标准差/nm 置信区间/nm
15 130.56 52.01 ±10.19(微球)
20 168.63 86.62 ±16.98(微球)
25 335.95 136.41 ±26.74
30 340.23 138.19 ±27.08

Tab.4

Mechanical properties of nanofiber membranes with different PCL/PEG mass fractions"

溶液质量分数/% 断裂强度/MPa 断裂伸长率/%
15 0.31 68.91
20 0.81 85.15
25 2.46 87.14
30 2.78 93.40

Fig.4

SEM images of traditional (a) and modified (b)electrospinning PCL/PEG membranes(×2 000)"

Tab.5

Pore size statistics of traditional and modified electrospinning PCL/PEG membranes"

纺丝方式 平均孔面积/μm2 标准差/μm2 置信区间/μm2
传统静电纺 9.00 2.94 ±0.41
改进静电纺 15.22 3.59 ±0.50

Fig.5

Adhesion (a) and proliferation (b) of EC on nanofiber membranes"

Fig.6

SEM images of EC cultured on traditional(a)and improved(b)nanofiber membranes at different times(×600)"

[1] 李奇薇, 李超婧, 王富军, 等. 纤维基组织工程支架结构对细胞行为的影响[J]. 中国生物医学工程学报, 2018,37(3):372-379.
LI Qiwei, LI Chaojing, WANG Fujun, et al. Effects of scaffold structure on cellular behavior[J]. Journal of Chinese Biomedical Engineering, 2018,37(3):372-379.
[2] NAM J, HUANG Y, AGARWAL S, et al. Improved cellular infiltration in electrospun fiber via engineered porosity[J]. Tissue Engineering, 2007,13(9):2249-2257.
doi: 10.1089/ten.2006.0306 pmid: 17536926
[3] LEONG M F, RASHEED M Z, LIM T C, et al. In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(d,l-lactide) scaffold fabricated by cryogenic electrospinning technique[J]. Journal of Biomedical Materials Research Part A, 2009,91(1):231-240.
pmid: 18814222
[4] LEVORSON E J, RAMAN S P, CHENNAZHI K P, et al. Fabrication and characterization of multiscale electrospun scaffolds for cartilage regeneration[J]. Biomedical Materials, 2013,8(1):014103.
doi: 10.1088/1748-6041/8/1/014103 pmid: 23353096
[5] LEE J B, JEONG S I, BAE M S, et al. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration[J]. Tissue Engineering Part A, 2011,17(21/22):2695-2702.
[6] RNJAK-KOVACINA J, WISE S G, LI Z, et al. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering[J]. Biomaterials, 2011,32(28):6729-6736.
doi: 10.1016/j.biomaterials.2011.05.065 pmid: 21683438
[7] BLAKENEY B A, TAMBRALLI A, ANDERSON J M, et al. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold[J]. Biomaterials, 2011,32(6):1583-1590.
doi: 10.1016/j.biomaterials.2010.10.056 pmid: 21112625
[8] SHIM I K, SUH W H, LEE S Y, et al. Chitosan nano-/microfibrous double-layered membrane with rolled-up three-dimensional structures for chondrocyte cultiva-tion[J]. Journal of Biomedical Materials Research Part A, 2009,90(2):595-602.
pmid: 18563820
[9] GU B K, PARK S J, KIM M S, et al. Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials[J]. Carbohydrate Polymers, 2013,97(1):65-73.
doi: 10.1016/j.carbpol.2013.04.060 pmid: 23769518
[10] CHENG Tingting, LI Siqi, XU Lan, et al. Controllable preparation and formation mechanism of nanofiber membranes with large pore sizes using a modified electrospinning[J]. Materials & Design, 2019,178:107867.
[11] 彭兰兰, 杨庆, 沈新元, 等. 聚ε-己内酣聚乙二醇共混纳米纤维的静电纺丝研究[J]. 合成纤维, 2008,37(11):25-30.
PENG Lanlan, YANG Qing, SHEN Xinyuan, et al. Study on electrospinning of poly-hexane halide polyethylene glycol blended nanofibers[J]. Synthetic Fiber in China, 2008,37(11):25-30.
[12] 邹爽, 赵金松, 陈驰. 静电纺丝技术的影响因素及应用研究综述[J]. 河南科技, 2019(5):75-77.
ZOU Shuang, ZHAO Jinsong, CHEN Chi. Review on the influence factors and application of electrospinning technology[J]. Henan Science & Technology, 2019(5):75-77.
[13] 邢同海. 改性聚己内酯纤维膜的制备及性能表征[D]. 杭州:浙江理工大学, 2015: 18.
XING Tonghai. Preparation and characterization of modified polycaprolactone fiber membrane[D]. Hangzhou:Zhejiang Sci-Tech University, 2015: 18.
[14] 林俊杰, 许伟鸿, 邓玲利, 等. SA溶液浓度对乳液静电纺丝SA/PCL纳米纤维成形的影响[J]. 合成纤维工业, 2017,40(6):7-11.
LIN Junjie, XU Weihong, DENG Lingli, et al. Effect of SA solution concentration on formation of SA/PCL nanofiber via emulsion electrospinning process[J]. China Synthetic Fiber Industry, 2017,40(6):7-11.
[1] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[2] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile / linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[3] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone / fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[4] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[5] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan / polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[6] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride / FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[7] WANG Liyuan, KANG Weimin, ZHUANG Xupin JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[8] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[9] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[10] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[11] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
[12] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[13] HAO Zhifen, XU Naiku, FENG Yan, DUAN Mengxin, XIAO Changfa. Preparation of fibrous membrane by blending polymethacrylate with polyacrylate and its oil / water separation property [J]. Journal of Textile Research, 2020, 41(06): 21-26.
[14] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[15] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!