Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (10): 14-19.doi: 10.13475/j.fzxb.20190902506

• Fiber Materials • Previous Articles     Next Articles

One-pot synthesis and characterization of aminated cellulose nanocrystals

LU Linna1,2, LI Yonggui1,2, LU Qilin1,2()   

  1. 1. Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China
    2. Clothing and Design Faculty, Minjiang University, Fuzhou, Fujian 350108, China
  • Received:2019-09-06 Revised:2020-07-12 Online:2020-10-15 Published:2020-10-27
  • Contact: LU Qilin E-mail:qilinlu@mju.edu.cn

Abstract:

In order to realize green preparation of nanocellulose derivatives, ammonium persulfate was used to oxidize bamboo pulp fibers to obtain carboxylated nanocellulose (CNC) under microwave-hydrothermal condition based on mechanical force chemistry. Then condensation reaction between CNC and diethylenetriamine was carried out in the aqueous phase to realize the one-pot synthesis of aminated nanocellulose (ACNC), and its properties were explored. The results show that ACNC is rod-shaped with a diameter of 10-40 nm and a length of 50-300 nm, and the grafting ratio of ACNC is 6.29%. The crystal form of ACNC is still cellulose type I, besides the crystallinity increases from 59% to 79%. The thermal stability of ACNC is not significantly lower than that of bamboo fiber, but it is significantly higher than that of CNC, indicating that the thermal stability of CNC is improved after grafting amino groups. The preparation method is green and efficient, and the obtained cellulose derivatives are expected to play a role in the field of biosolidification and physical property enhancement.

Key words: aminated cellulose nanocrystal, mechanochemistry, ammonium persulfate, microwave-hydrothermal, one-pot

CLC Number: 

  • TS131.9

Fig.1

Amidation reaction of CNC"

Fig.2

FT-IR spectra of bamboo pulp, CNC and ACNC"

Fig.3

Structure of cellulose"

Fig.4

13C NMR spectra of bamboo pulp, CNC and ACNC"

Tab.1

Element contents of CNC and ACNC%"

样品名称 N C H
CNC 0.09 42.45 6.48
ACNC 1.84 42.78 6.65

Fig.5

TEM images of CNC and ACNC"

Fig.6

XRD patterns of bamboo pulp, CNC and ACNC"

Fig.7

TG and DTG curves of bamboo pulp, CNC and ACNC"

Tab.2

Thermodynamic parameters of bamboo pulp, CNC and ACNC"

样品
名称
初始分解
温度/℃
最大质量损
失速率/℃
质量损
失率/%
竹浆粕 338.8 364.2 89.5
CNC 256.5 325.8 64.2
ACNC 310.9 342.2 66.1
[1] HAIDER T P, VOLKER C, KRAMM J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie International Edition, 2019,58(1):50-62.
doi: 10.1002/anie.201805766 pmid: 29972726
[2] POLKO J K, KIEBER J J. The regulation of cellulose biosynjournal in plants[J]. The Plant Cell, 2019,31(2):282-296.
doi: 10.1105/tpc.18.00760 pmid: 30647077
[3] JIN H, ALAIN D, NING L. Nanocellulose: from fundamentals to advanced materials[M]. John Wiley & Sons, 2019: 21-52.
[4] REDDY M M, VIVEKANANDHAN S, MISRA M, et al. Biobased plastics and bionanocomposites: current status and future opportunities[J]. Progress in Polymer Science, 2013,38(10/11):1653-1689.
doi: 10.1016/j.progpolymsci.2013.05.006
[5] MARIANO M, EI K N, DUFRESNE A. Cellulose nanocrystals and related nanocomposites: review of some properties and challenges[J]. Journal of Polymer Science Part B: Polymer Physics, 2014,52(12):791-806.
doi: 10.1002/polb.23490
[6] 陈觉声, 刘淑贞, 刘雄. 微细化纤维素改性技术研究进展[J]. 食品工业科技, 2012,33(19):382-386.
CHEN Juesheng, LIU Shuzhen, LIU Xiong. Research progress in micronized cellulose modification techno-logy[J]. Science and Technology of Food Industry, 2012,33(19):382-386.
[7] HOKKANEN S, REPO E, SUOPAJÄRVI T, et al. Adsorption of Ni(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) from aqueous solutions by amino modified nanostructured microfibrillated cellulose[J]. Cellulose, 2014,21(3):1471-1487.
doi: 10.1007/s10570-014-0240-4
[8] MARYAM G, FEDERICO C, PERTOMAS L, et al. Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials[J]. Biomacromolecules, 2015,16(10):3399-410.
doi: 10.1021/acs.biomac.5b01117 pmid: 26402379
[9] 李维功. 纳米微晶纤维素的氨基化改性及其吸附性能研究[D]. 济南:齐鲁工业大学, 2015: 8-10.
LI Weigong. Amino-functionalization of nanocrystalline cellulose and its absorption behavior[D]. Jinan:Qilu University of Technology, 2015: 8-10.
[10] 陈金伟, 商士斌, 沈明贵, 等. 端氨基纳米纤维素的制备及对Pb(Ⅱ)的吸附性能研究[J]. 林产化学与工业, 2018,38(6):15-23.
CHEN Jinwei, SHANG Shibin, SHEN Minggui, et al. Preparation of amino acidterminated nanocellulose and adsorp-tion properties of Pb(Ⅱ)[J]. Chemistry and Industry of Forest Products, 2018,38(6):15-23.
[11] 季美秀, 张洋, 张天蒙, 等. 氨基化纳米纤维素改性无醛装饰纸的制备及性能[J]. 东北林业大学学报, 2020,48(2):93-97.
JI Meixiu, ZHANG Yang, ZHANG Tianmeng. Preparation and properties of aminated nanocellulose modified aldehyde decorative paper[J]. Journal of Northeast Foresrty University, 2020,48(2):93-97.
[12] 王香梅, 谢龙, 宋海龙. 水性引发剂浓度对MMA/n-BA/H-PDMS微乳液聚合的影响[J]. 高分子材料科学与工程, 2017,33(1):7-11.
WANG Xiangmei, XIE Long, SONG Hailong. Effects of water-soluble initiator concentration on the microemulsion polymerization of MMA/n-BA/H-PDMS[J]. Polymer Materials Science & Engineering, 2017,33(1):7-11.
[13] FUJII S, MATSUZAWA S, NAKAMURA Y. One-pot synjournal of conducting polymer-coated latex particles: ammonium persulfate as free radical initiator and chemical oxidant[J]. Chemical Communications, 2010,46(38):7217-7219.
doi: 10.1039/c0cc02005b pmid: 20820522
[14] BEYER M K, CLAUSEN-SCHAUMANN H. Mechanochemistry: the mechanical activation of covalent bonds[J]. Chemical Reviews, 2005,105(8):2921-2948.
doi: 10.1021/cr030697h pmid: 16092823
[15] LIAO Z, HUANG Z, HU H, et al. Microscopic structure and properties changes of cassava stillage residue pretreated by mechanical activation[J]. Bioresource Technology, 2011,102(17):7953-7958.
doi: 10.1016/j.biortech.2011.05.067
[16] HUANG P, WU M, KUGA S, et al. Aqueous pretreatment for reactive ball milling of cellulose[J]. Cellulose, 2013,20(4):2175-2178.
doi: 10.1007/s10570-013-9940-4
[17] 宁春花, 徐冬梅, 张可达. 一种新型环氧树脂固化剂的合成[J]. 中国胶粘剂, 2005,14(2):41-43.
NING Chunhua, XU Dongmei, ZHANG Keda. Synjournal of a new type curing agent of epoxy resin[J]. China Adhesives, 2005,14(2):41-43.
[18] 李治明, 荣荣, 尹学琼, 等. 细菌纤维素制备及吸附金属离子的研究进展[J]. 精细化工, 2018,35(5):721-727.
LI Zhiming, RONG Rong, YIN Xueqiong, et al. Research progress of preparation of bacterial cellulose and its adsorption for metal ions[J]. Fine Chemicals, 2018,35(5):721-727.
[19] MAHFOUDHI N, BOUFI S. Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review[J]. Cellulose, 2017,24(3):1171-1197.
doi: 10.1007/s10570-017-1194-0
[20] 胡阳. 过硫酸盐体系制备羧基化纳米纤维素及其衍生物的研究[D]. 福州:福建农林大学, 2014: 34-43.
HU Yang. Manufacture of carboxylated cellulose nanocrystals by persulfate and its derivatives[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014: 34-43.
[21] FOLLAIN N, MONTANARI S, JEACOMINE I, et al. Coupling of amines with polyglucuronic acid: evidence for amide bond formation[J]. Carbohydrate Polymers, 2008,74(3):333-343.
doi: 10.1016/j.carbpol.2008.02.016
[22] JOHNSON R K. TEMPO-oxidized nanocelluloses: Surface modification and use as additives in cellulosic nanocomposites[D]. Blacksburg: The Virginia Polytechnic Institute & State University, 2010: 1-50.
[23] SEGAL L, CREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959,29(10):786-794.
doi: 10.1177/004051755902901003
[24] HEISKANEN I, BACKFOLK K, VEHVILAINEN M, et al. Process for producing microfibrillated cellulose: US 13/382706[P]. 2010-07-02.
[25] HASANI M, CRANSTON E D, WESTMAN G, et al. Cationic surface functionalization of cellulose nanocrystals[J]. Soft Matter, 2008,4(11):2238-2244.
doi: 10.1039/B806789A
[26] LU P, HSIEH Y. Preparation and properties of cellulose nanocrystals: rods, spheres, and network[J]. Carbohydrate Polymers, 2010,82(2):329-336.
doi: 10.1016/j.carbpol.2010.04.073
[27] LI B, XU W, KRONLUND D, et al. Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation[J]. Carbohydrate Polymers, 2015,133(133):605-612.
doi: 10.1016/j.carbpol.2015.07.033
[28] JI H, XIANG Z, QI H, et al. Strategy towards one-step preparation of carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid[J]. Green Chemistry, 2019,21(8):1956-1964.
doi: 10.1039/C8GC03493A
[29] MEYABADI T F, DADASHIAN F, SADEGHI G M, et al. Spherical cellulose nanoparticles preparation from waste cotton using a green method[J]. Powder Technology, 2014,261:232-240.
doi: 10.1016/j.powtec.2014.04.039
[30] RANBY B G. Fibrous macromolecular systems. Cellulose and muscle. the colloidal properties of cellulose mice-lles[J]. Discussions of the Faraday Society, 1951,11:158-164.
doi: 10.1039/DF9511100158
[1] YU Zhicai, ZHONG Yueqi, GONG R Hugh, XIE Haoyang, HUSSAIN Azmat. Fabric matching based on three-dimensional drape model and fabric weight [J]. Journal of Textile Research, 2020, 41(10): 46-51.
[2] DI Lan, YANG Da, LIANG Jiuzhen, MA Mingyin. Fabric defect detection method based on primitive segmentation and Gabor filtering [J]. Journal of Textile Research, 2020, 41(09): 59-66.
[3] QIN Yimin. Clinical applications of silver containing alginate wound dressings [J]. Journal of Textile Research, 2020, 41(09): 183-190.
[4] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[5] QIN Yimin. Physicochemical properties and bioactivities of chitosan fibers [J]. Journal of Textile Research, 2019, 40(05): 170-176.
[6] . Function finishing and anti-dripping property of polyethylene terephthalate fabbrie coated with graphene oxide [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 141-145.
[7] . Prediction model on twist shrindage of wool yarn [J]. Journal of Textile Research, 2016, 37(05): 32-36.
[8] . Characteristic and innovation on style of modern men's suit [J]. Journal of Textile Research, 2015, 36(10): 120-127.
[9] . Study on amino silicon-finishing method for preparation of thermo-responsive textiles [J]. Journal of Textile Research, 2015, 36(02): 86-91.
[10] . Evenness quality control for worsted pure wool yarn based on quality index number [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(11): 28-0.
[11] . Anti-stabbing performance of laminated composite fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(5): 55-0.
[12] Yu-Shan SUN. Development survey and outlook of new solvent process regenerated cellulose fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 126-0.
[13] . Preparation of flame retardant basalt fiber fabric/polylactic acid composite [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(1): 20-24.
[14] ZHU Shi-Feng, SHI Mei-Wu. Current status and developing trend of research on anti-dripping of thermoplastic fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(6): 121-124.
[15] ZHANG Chang-Huan, CHEN Li-Hua.  Difference of textile pH value detection standards and correlation analysis of detection results [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(5): 46-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!