Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (10): 178-187.doi: 10.13475/j.fzxb.20190704610

• Comprehensive Review • Previous Articles     Next Articles

Advances in flame-retardant surface treatments for textiles

LIU Jinxu, LIU Pengqing()   

  1. College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
  • Received:2019-07-15 Revised:2020-07-01 Online:2020-10-15 Published:2020-10-27
  • Contact: LIU Pengqing E-mail:liupq@scu.edu.cn

Abstract:

To further improve the practicability and extend the applications of flame-retardant fibers and fabrics, recent advances of high-quality and multifunctional surface treatments for textiles were reviewed. Focusing on physical deposition, chemical modification, sol-gel process, and layer-by-layer self-assembly, research lierature on the development of the treatment qualities, such as washability, mechanical robustness, and mechanical strength were summarized. Furthermore, advantages and applications of multifunctional flame-retardant surface treatments were scrutinized. The review indicates that future developments of flame-retardant surface treatments for textiles will be concentrated on the efficient combination of high quality to realize the practical and functionalized applications of multifunctional flame-retardant textiles and on the applications of surface treatments in wearable electronics, furniture, clothing, and protective equipment.

Key words: flame-retardant, multi-function fabric, surface treatment, sol-gel

CLC Number: 

  • TS195.6

Fig.1

Mechanism and scheme of sol-gel process for fabrication of flame-retardant coatings (M is Si or metal)"

Fig.2

Schematic diagram of fabrication of flame-retardant coatings via LbL self-assembly process and their structure"

[1] 李红燕, 张渭源. 纤维及织物阻燃技术综论[J]. 材料科学与工程学报, 2007(5):798-801.
LI Hongyan, ZHANG Weiyuan. Current status and development of fire-proof finishing methods for fiber and textile[J]. Journal of Materials Science and Engineering, 2007(5):798-801.
[2] 汪建红. 织物阻燃剂的发展现状与展望[J]. 河南科技学院学报(自然科学版), 2014,42(3):52-55.
WANG Jianhong. The status quo and expectation of fabric flame retardant[J]. Journal of Henan Institute of Science and Technology (Nature Sciences Edition), 2014,42(3):52-55.
[3] LAZAR S T, KOLIBABA T J, GRUNLAN J C. Flame-retardant surface treatments[J]. Nature Reviews Materials, 2020,5(4):259-275.
doi: 10.1038/s41578-019-0164-6
[4] 王鸣义. 高品质阻燃聚酯纤维及其织物的技术进展和趋势[J]. 纺织导报, 2018 (2):13-22,24.
WANG Mingyi. Technological development of high-quality flame-retardant polyester fiber and its fabric[J]. China Textile Leader, 2018 (2):13-22,24.
[5] 董朝红. 棉用含磷氮元素聚硅氧烷阻燃剂的制备及性能研究[D]. 无锡: 江南大学, 2014: 1-2.
DONG Chaohong. Preparation and properties of polysiloxane flame retardants containing phophorus and nitrogen elements for cotton fabrics[D]. Wuxi: Jiangnan University, 2014: 1-2.
[6] ZHOU Q, WU W, ZHOU S, et al. Polydopamine-induced growth of mineralized γ-FeOOH nanorods for construction of silk fabric with excellent superhydrophobicity, flame retardancy and UV resistance[J]. Chemical Engineering Journal, 2020,382:122988.
doi: 10.1016/j.cej.2019.122988
[7] 于志辉. 军用高强涤纶面料的阻燃拒水多功能复合整理[D]. 上海: 东华大学, 2018: 1-3.
YU Zhihui. Flame-retardant and water-repellent multifunctional finishing of high-strength polyester fabric for military[D]. Shanghai: Donghua University, 2018: 1-3.
[8] 韩栋, 李娜娜, 封严, 等. 纺织材料抗紫外改性的研究进展[J]. 纺织学报, 2014,35(4):160-164.
HAN Dong, LI Nana, FENG Yan, et al. Recent progress of ultraviolet resistant modification for textiles[J]. Journal of Textile Research, 2014,35(4):160-164.
[9] LI S, HUANG J, CHEN Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications[J]. Journal of Materials Chemistry A, 2017,5(1):31-55.
doi: 10.1039/C6TA07984A
[10] JIA L, ZHANG G, XU L, et al. Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2019,11(1):1680-1688.
doi: 10.1021/acsami.8b18459 pmid: 30520621
[11] PARK M, IM J, SHIN M, et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres[J]. Nature Nanotechnology, 2012,7(12):803-809.
doi: 10.1038/NNANO.2012.206
[12] 李广莎, 张兰, 高琴文, 等. 涤纶织物阻燃拒水拒油多功能整理研究[J]. 印染助剂, 2016,33(6):45-48.
LI Guangsha, ZHANG Lan, GAO Qinwen, et al. Study on flame retardant, water and oil repellent multi-functional finishing of polyester fabric[J]. Textile Auxiliaries, 2016,33(6):45-48.
[13] 陈兵. 抗菌—阻燃复合功能助剂的制备及对棉织物的应用性能研究[D]. 青岛: 青岛大学, 2019: 1-2.
CHEN Bing. Preparation of antibacterial-flame retardant multifunctional auxiliary and its application on cotton fabrics[D]. Qingdao: Qingdao University, 2019: 1-2.
[14] CHEN S S, LI X, LI Y, et al. Intumescent flame-retardant and self-sealing superhydrophobic soatings on cotton fabric[J]. ACS Nano, 2015,9(4):4070-4076.
doi: 10.1021/acsnano.5b00121 pmid: 25777158
[15] FANG F, XIAO D Z, ZHANG X, et al. Construction of intumescent flame retardant and antimicrobial coating on cotton fabric via layer-by-layer assembly technology[J]. Surface & Coatings Technology, 2015,276:726-734.
[16] MATEOS A J, CAIN A A, GRUNLAN J C. Large-scale continuous immersion system for layer-by-layer deposition of flame retardant and conductive nanocoatings on fabric[J]. Industrial & Engineering Chemistry Research, 2014,53(15):6409-6416.
[17] 吴华, 张红霞, 黄锦波, 等. 阻燃抗紫外线复合功能窗帘交织物的性能[J]. 纺织学报, 2016,37(6):54-58.
WU Hua, ZHANG Hongxia, HUANG Jinbo, et al. Properties of curtain fabric with flame-retardant and anti-ultraviolet composite function[J]. Journal of Textile Research, 2016,37(6):54-58.
[18] CHEN D Q, WANG Y Z, HU X P, et al. Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics[J]. Polymer Degradation and Stability, 2005,88(2):349-356.
doi: 10.1016/j.polymdegradstab.2004.11.010
[19] HORROCKS A R, WANG M Y, HALL M E, et al. Flame retardant textile back-coatings: part 2: Effectiveness of phosphorus-containing flame retardants in textile back-coating formulations[J]. Polymer International, 2000,49(10):1079-1091.
doi: 10.1002/(ISSN)1097-0126
[20] WESOLEK D, GIEPARDA W. Single- and multiwalled carbon nanotubes with phosphorus based flame retardants for textiles[J]. Journal of Nanomaterials, 2014,2014:727494.
[21] BUTSTRAEN C, SALAUN F, DEVAUX E, et al. Application of flame-retardant double-layered shell microcapsules to nonwoven polyester[J]. Polymers, 2016,8(7):267.
doi: 10.3390/polym8070267
[22] GIRAUD S, BOURBIGOT S, ROCHERY M, et al. Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating[J]. Polymer Degradation and Stability, 2005,88(1):106-113.
doi: 10.1016/j.polymdegradstab.2004.01.028
[23] ZOPE I S, FOO S, SEAH D G J, et al. Development and evaluation of a water-based flame retardant spray coating for cotton fabrics[J]. ACS Applied Materials & Interfaces, 2017,9(46):40782-40791.
doi: 10.1021/acsami.7b09863 pmid: 29035506
[24] ZHOU T, HE X, GUO C, et al. Synjournal of a novel flame retardant phosphorus/nitrogen/siloxane and its application on cotton fabrics[J]. Textile Research Journal, 2014,85(7):701-708.
doi: 10.1177/0040517514555801
[25] YAN X, ZHOU W, ZHAO X, et al. Preparation, flame retardancy and thermal degradation behaviors of polyacrylonitrile fibers modified with diethylenetriamine and zinc ions[J]. Journal of Thermal Analysis and Calorimetry, 2015,124(2):719-728.
doi: 10.1007/s10973-015-5180-1
[26] WANG L H, REN Y L, WANG X L, et al. Fire retardant viscose fiber fabric produced by graft polymerization of phosphorus and nitrogen-containing monomer[J]. Cellulose, 2016,23(4):2689-2700.
doi: 10.1007/s10570-016-0970-6
[27] DONG Q, CHEN K, JIN X, et al. Investigation of flame retardant flexible polyurethane foams containing dopo immobilized titanium dioxide nanoparticles[J]. Polymers, 2019,11(1):75.
doi: 10.3390/polym11010075
[28] GAO D, ZHAO P, LYU B, et al. Composite based on poly(acrylic acid)/modified attapulgite/zinc oxide as a flame retardant of cotton fabrics[J]. Cellulose, 2020,27(5):2873-2886.
doi: 10.1007/s10570-019-02948-2
[29] WANG H, CAO M, ZHAO H, et al. Double-cross-linked aerogels towards ultrahigh mechanical properties and thermal insulation at extreme environment[J]. Chemical Engineering Journal, 2020,399:125698.
doi: 10.1016/j.cej.2020.125698
[30] GAO D G, LI R, LV B, et al. Flammability, thermal and physical-mechanical properties of cationic polymer/montmorillonite composite on cotton fabric[J]. Composites Part B-Engineering, 2015,77:329-337.
doi: 10.1016/j.compositesb.2015.03.061
[31] SAMANTA A K, BHATTACHARYYA R, JOSE S, et al. Fire retardant finish of jute fabric with nano zinc oxide[J]. Cellulose, 2017,24(2):1143-1157.
doi: 10.1007/s10570-016-1171-z
[32] XING W Y, SONG L, LV P, et al. Preparation, flame retardancy and thermal behavior of a novel UV-curable coating containing phosphorus and nitrogen[J]. Materials Chemistry and Physics, 2010,123(2/3):481-486.
doi: 10.1016/j.matchemphys.2010.04.044
[33] XING W Y, SONG L, JIE G X, et al. Synjournal and thermal behavior of a novel UV-curable transparent flame retardant film and phosphorus-nitrogen synergism of flame retardancy[J]. Polymers for Advanced Technologies, 2011,22(12):2123-2129.
doi: 10.1002/pat.1732
[34] XING W Y, SONG L, HU Y, et al. Thermal properties and combustion behaviors of a novel UV-curable flame retarded coating containing silicon and phosphorus[J]. Polymer Degradation and Stability, 2009,94(9):1503-1508.
doi: 10.1016/j.polymdegradstab.2009.04.037
[35] MAYER-GALL T, KNITTEL D, GUTMANN J S, et al. Permanent flame retardant finishing of textiles by allyl-functionalized polyphosphazenes[J]. ACS Applied Materials & Interfaces, 2015,7(18):9349-9363.
doi: 10.1021/acsami.5b02141 pmid: 25902050
[36] XU L J, WANG W, YU D. Durable flame retardant finishing of cotton fabrics with halogen-free organophosphonate by UV photoinitiated thiol-ene click chemistry[J]. Carbohydrate Polymers, 2017,172:275-283.
doi: 10.1016/j.carbpol.2017.05.054 pmid: 28606535
[37] 王菊生. 染整工艺原理(第二册)[M]. 北京: 中国纺织出版社, 1984: 225-226.
WANG Jusheng. Principles of dyeing and finishing (Volume 2)[M]. Beijing: China Textile & Apparel Press, 1984: 225-226.
[38] ALONGI J, MALUCELLI G. State of the art and perspectives on sol-gel derived hybrid architectures for flame retardancy of textiles[J]. Journal of Materials Chemistry, 2012,22(41):21805-21809.
doi: 10.1039/c2jm32513f
[39] VASILJEVIC J, HADZIC S, JERMAN I, et al. Study of flame-retardant finishing of cellulose fibres: Organic-inorganic hybrid versus conventional organophos-phonate[J]. Polymer Degradation and Stability, 2013,98(12):2602-2608.
doi: 10.1016/j.polymdegradstab.2013.09.020
[40] HRIBERNIK S, SMOLE M S, KLEINSCHEK K S, et al. Flame retardant activity of SiO2-coated regenerated cellulose fibres[J]. Polymer Degradation and Stability, 2007,92(11):1957-1965.
doi: 10.1016/j.polymdegradstab.2007.08.010
[41] ALONGI J, CIOBANU M, TATA J, et al. Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol-gel treatments[J]. Journal of Applied Polymer Science, 2011,119(4):1961-1969.
doi: 10.1002/app.32954
[42] CIRELI A, ONAR N, EBEOGLUGIL M F, et al. Development of flame retardancy properties of new halogen-free phosphorous Doped SiO2 Thin films on fabrics[J]. Journal of Applied Polymer Science, 2007,105(6):3748-3756.
doi: 10.1002/(ISSN)1097-4628
[43] ZHANG Q H, ZHANG W, HUANG J Y, et al. Flame retardance and thermal stability of wool fabric treated by boron containing silica sols[J]. Materials & Design, 2015,85:796-799.
[44] LIU C, XING T L, WEI B J, et al. Synergistic effects and mechanism of modified silica sol flame retardant systems on silk fabric[J]. Materials, 2018,11(10):1842.
doi: 10.3390/ma11101842
[45] ALONGI J, COLLEONI C, ROSACE G, et al. Sol-gel derived architectures for enhancing cotton flame retardancy: effect of pure and phosphorus-doped silica phases[J]. Polymer Degradation and Stability, 2014,99:92-98.
doi: 10.1016/j.polymdegradstab.2013.11.020
[46] KUNDU C K, SONG L, HU Y. Sol-gel coatings from DOPO-alkoxysilanes: efficacy in fire protection of polyamide 66 textiles[J]. European Polymer Journal, 2020,125:109483.
doi: 10.1016/j.eurpolymj.2020.109483
[47] MALUCELLI G. Surface-engineered fire protective coatings for fabrics through sol-gel and layer-by-layer methods: an overview[J]. Coatings, 2016,6(3):33.
doi: 10.3390/coatings6030033
[48] STOCKTON W B, RUBNER M F. Molecular-level processing of conjugated polymers: 4: Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions[J]. Macromolecules, 1997,30(9):2717-2725.
doi: 10.1021/ma9700486
[49] FANG M, KASCHAK D M, SUTORIK A C, et al. A 'mix and match' ionic-covalent strategy for self-assembly of inorganic multilayer films[J]. Journal of the American Chemical Society, 1997,119(50):12184-12191.
doi: 10.1021/ja972569e
[50] LI Y C, SCHULZ J, GRUNLAN J C. Polyelectrolyte/nanosilicate thin-film assemblies: influence of pH on growth, mechanical behavior, and flammability[J]. ACS Appl Mater Interfaces, 2009,1(10):2338-47.
doi: 10.1021/am900484q pmid: 20355871
[51] LI Y C, SCHULZ J, MANNEN S, et al. Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric[J]. ACS Nano, 2010,4(6):3325-3337.
pmid: 20496883
[52] 欧育湘, 辛菲, 赵毅, 等. 近5年问世的聚合物/无机物纳米复合材料的阻燃性[J]. 高分子材料科学与工程, 2007 (5):1-5.
OU Yuxiang, XIN Fei, ZHAO Yi, et al. Flame retardancy of polymer/inorganic nanocomposites developed in the last five years[J]. Polymer Materials Science and Engineering, 2007 (5):1-5.
[53] HUANG G B, YANG J G, GAO J R, et al. Thin films of intumescent flame retardant-polyacrylamide and exfoliated graphene oxide fabricated via layer-by-layer assembly for improving flame retardant properties of cotton fabric[J]. Industrial & Engineering Chemistry Research, 2012,51(38):12355-12366.
[54] LI Y C, MANNEN S, MORGAN A B, et al. Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric[J]. Advanced Materials, 2011,23(34):3926-31.
doi: 10.1002/adma.201101871 pmid: 21800384
[55] LAUFER G, KIRKLAND C, MORGAN A B, et al. Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton[J]. Biomacromolecules, 2012,13(9):2843-2848.
pmid: 22897635
[56] CAROSIO F, DI BLASIO A, ALONGI J, et al. Green DNA-based flame retardant coatings assembled through Layer by Layer[J]. Polymer, 2013,54(19):5148-5153.
doi: 10.1016/j.polymer.2013.07.029
[57] CAROSIO F, ALONGI J. Few durable layers suppress cotton combustion due to the joint combination of layer by layer assembly and UV-curing[J]. RSC Advances, 2015,5(87):71482-71490.
doi: 10.1039/C5RA11856E
[58] PAN Y, WANG W, LIU L X, et al. Influences of metal ions crosslinked alginate based coatings on thermal stability and fire resistance of cotton fabrics[J]. Carbohydrate Polymers, 2017,170:133-139.
doi: 10.1016/j.carbpol.2017.04.065 pmid: 28521978
[59] CAROSIO F, DI BLASIO A, CUTTICA F, et al. Flame retardancy of polyester fabrics treated by spray-assisted layer-by-layer silica architectures[J]. Industrial & Engineering Chemistry Research, 2013,52(28):9544-9550.
[60] 沈家力, 刘天尧, 高扬, 等. 静电自组装法制备阻燃抗菌染色蚕丝织物[J]. 印染, 2015,41(6):1-5.
SHEN Jiali, LIU Tianyao, GAO Yang, et al. Preparation of flame-retardant and antibacterial silk dyeings by self-assembly procedure[J]. China Dyeing & Finishing, 2015,41(6):1-5.
[61] 沈家力, 潘娜, 代翱杰, 等. 静电自组装阻燃蚕丝织物的染色性能[J]. 印染, 2015,41(1):1-4.
SHEN Jiali, PAN Na, DAI Aojie, et al. Dyeing behaviors of flame retardant silk fabric prepared by electrostatic layer-by-layer assembly procedure[J]. China Dyeing & Finishing, 2015,41(1):1-4.
[62] XUE C H, ZHANG L, WEI P, et al. Fabrication of superhydrophobic cotton textiles with flame retar-dancy[J]. Cellulose, 2016,23(2):1471-1480.
doi: 10.1007/s10570-016-0885-2
[63] QIN H, LI X, ZHANG X, et al. Preparation and performance testing of superhydrophobic flame retardant cotton fabric[J]. New Journal of Chemistry, 2019,43(15):5839-5848.
doi: 10.1039/C9NJ00307J
[64] CHEN T, HONG J, PENG C, et al. Superhydrophobic and flame retardant cotton modified with DOPO and fluorine-silicon-containing crosslinked polymer[J]. Carbohydrate Polymers, 2019,208:14-21.
pmid: 30658784
[65] HASSAN M M, MCLAUGHLIN J R. Multi-functional wool fabrics by graft-copolymerisation with polystyrene sulphonate: their enhanced fire retardancy, mechanical properties, and stain-resistance[J]. New Journal of Chemistry, 2018,42(23):18919-18927.
doi: 10.1039/C8NJ03686A
[66] ZHANG D, WILLIAMS B L, BECHER E M, et al. Flame retardant and hydrophobic cotton fabrics from intumescent coatings[J]. Advanced Composites and Hybrid Materials, 2017,1(1):177-184.
doi: 10.1007/s42114-017-0006-1
[67] LIN D, ZENG X, LI H, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019,533:198-206.
doi: 10.1016/j.jcis.2018.08.060 pmid: 30165297
[68] VASILJEVIC J, TOMSIC B, JERMAN I, et al. Novel multifunctional water- and oil-repellent, antibacterial, and flame-retardant cellulose fibres created by the sol-gel process[J]. Cellulose, 2014,21(4):2611-2623.
doi: 10.1007/s10570-014-0293-4
[69] CHEN X X, FANG F, ZHANG X, et al. Flame-retardant, electrically conductive and antimicrobial multifunctional coating on cotton fabric via layer-by-layer assembly technique[J]. RSC Advances, 2016,6(33):27669-27676.
doi: 10.1039/C5RA26914H
[70] FANG F, CHEN X, ZHANG X, et al. Environmentally friendly assembly multilayer coating for flame retardant and antimicrobial cotton fabric[J]. Progress in Organic Coatings, 2016,90:258-266.
doi: 10.1016/j.porgcoat.2015.09.025
[71] ZHANG Y, TIAN W X, LIU L X, et al. Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings[J]. Chemical Engineering Journal, 2019,372:1077-1090.
doi: 10.1016/j.cej.2019.05.012
[1] MA Junzhi, GE Hong, WANG Dong, FU Shaohai. Preparation and properties of sol-gel modified flame retardant viscose fiber [J]. Journal of Textile Research, 2021, 42(01): 10-15.
[2] LIU Xiaohan, TIAN Miao, WANG Yunyi, LI Jun. Research progress in effect of flame-retardant fabric aging on its tensile strength [J]. Journal of Textile Research, 2020, 41(11): 181-188.
[3] WANG Yang, CHENG Chunzu, JIANG Li'na, REN Yuanlin, GUO Yingbin. Preparation of durable flame retardant polyacrylonitrile fabrics using UV-induced photo-grafting polymerization combined with sol-gel coating [J]. Journal of Textile Research, 2020, 41(10): 107-115.
[4] MA Junzhi, WANG Dong, FU Shaohai. Preparation and properties of flame-retardant viscose fiber / dithiopyrophosphate incorporated with graphene oxide [J]. Journal of Textile Research, 2020, 41(03): 15-19.
[5] DING Fang, REN Xuehong. Flame-retardant finishing of polyester fabrics by grafting phosphorus-nitrogen compounds [J]. Journal of Textile Research, 2020, 41(03): 100-105.
[6] ZHUANG Qun, ZHANG Fei, DU Zhaofang, JIANG Hua. Preparation of modified aramid fiber and epoxy resin composites and stab resistance thereof [J]. Journal of Textile Research, 2019, 40(12): 98-103.
[7] . Preparation and application of environmental flame-retarded silicone-acrylic flocking adhesive [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 96-100.
[8] . Research progress of new processes of flame retardant fabrics coating [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 168-173.
[9] . Flame retardant finishing of silk fabrics with boron phosphate doped silica sol [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 96-101.
[10] . Thermal degradation behaviors and kinetics of intumescent flame-retardant cotton fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 81-86.
[11] . Performance of curtains fabric with flame-retardant and anti ultraviolet composite function [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(06): 54-58.
[12] . Synthesis and characterization of hydrostatic pressure-resistant flame-retardant waterborne polyurethane fabric coating agent [J]. Journal of Textile Research, 2016, 37(05): 92-96.
[13] . Flame-retardant modification of down fibers by 1-phosphonopropane-1,2- dicarboxylic acid [J]. Journal of Textile Research, 2015, 36(10): 7-11.
[14] . Effect of fabric surface treatment on ink jet printing with reactive dyes [J]. Journal of Textile Research, 2015, 36(02): 128-132.
[15] . Antistatic effect of PET fabrics finished with mixture of nano ZnO & Fe2O3 sol [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 85-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!