Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (10): 74-80.doi: 10.13475/j.fzxb.20191203007

• Textile Engineering • Previous Articles     Next Articles

Energy dissipation evolution of jute fabric/polyethylene composite under cyclic stress relaxation

WANG Zexing(), WU Bo, LI Shuai, HE Bin   

  1. College of Textile and Fashion, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
  • Received:2019-12-12 Revised:2020-03-07 Online:2020-10-15 Published:2020-10-27

Abstract:

In order to investigate the energy dissipation characteristics of jute fiber reinforced thermoplastic composite under complex stress conditions, jute fabric/polyethylene composites were prepared using hot pressing with jute fabric as reinforcement and polyethylene film as matrix. The mechanical properties under cyclic stress relaxation were tested,and the effects of stress relaxation time, peak cyclic stress and cyclic number on evolution of the strain energy (total strain energy, elastic strain energy, plastic strain energy) and strain energy factor (recoverable and unrecoverable strain energy factor) were also analyzed. The results show that deformation mechanism and energy dissipation evolution of warp and fill specimen have good agreement. The strain energy and strain energy factor are governed by stress relaxation time, peak cyclic stress, and as well as cyclic number. Moreover, it is found that the elastic strain energy under cyclic stress relaxation is different from that under simple cyclic loading without stress relaxation.

Key words: jute fabric, polyethylene, cyclic stress relaxation, strain energy, energy dissipation

CLC Number: 

  • TS101.923

Fig.1

Stress and strain curves of warp and fill specimens"

Fig.2

First cycle of warp and fill specimens"

Fig.3

Strain energy(a) and strain energy factor(b) of warp and fill specimens"

Fig.4

Strain energy curves at different stress relaxation time. (a) Total strain energy; (b) Elastic strain energy; (c) Plastic strain energy"

Fig.5

Strain energy factor curves at different stress relaxation time. (a) Recoverable strain energy factory; (b) Unrecoverable strain energy factory"

Fig.6

First cycle of warp specimens at different stress relaxation time"

Fig.8

Curves of strain energy at different peak cyclic stress. (a) Total strain energy; (b) Elastic strain energy; (c) Plastic strain energy"

Fig.8

Curves of strain energy factor at different peak cyclic stress. (a) Recoverable strain energy factory; (b) Unrecoverable strain energy factory"

Fig.9

First cyclic of warp specimens at various peak cyclic stress"

[1] BAJWA D S, BHATTACHARJEE S. Current progress, trends and challenges in the application of biofiber composites by automotive industry[J]. Journal of Natural Fibers, 2016,13(6):660-669.
[2] IBRAHIM I D, JAMIRU T, SADIKU E R, et al. Mechanical properties of sisal fibre-reinforced polymer composites: A review[J]. Composite Interfaces, 2015,23(1):15-36.
doi: 10.1080/09276440.2016.1087247
[3] 郑科, 段盛文, 成莉凤, 等. 麻纤维增强热塑性复合材料的研究与应用[J]. 中国麻业科学, 2017,39(6):312-320.
ZHENG Ke, DUAN Shengwen, CHENG Lifeng, et al. Development and applications of fibrilia reinforced thermoplastic compo-sites[J]. Plant Fiber Sciences in China, 2017,39(6):312-320.
[4] 程伟, 孙利明, 姚晨光, 等. 麻纤维/热塑性树脂复合材料的研究进展[J]. 化工新材料, 2014,42(1):13-15, 35.
CHENG Wei, SUN Liming, YAO Chenguang, et al. Research progress of fibrilia/thermoplastic composites[J]. New Chemical Materials, 2014,42(1):13-15, 35.
[5] 李婷婷. HIPS/红麻纤维复合材料性能研究[D]. 大连: 大连工业大学, 2013: 23-57.
LI Tingting. Study on properties of HIPS/Kenaf fiber composite[D]. Dalian: Dalian Polytechnic University, 2013: 23-57.
[6] 杨建霞. 苎麻纤维增强复合材料力学性能及界面吸水失效机理研究[D]. 上海:东华大学, 2017: 57-101.
YANG Jianxia. Mechanical properties and wet-induced interfacial failure ramie fiber reinforced composites[D]. Shanghai: Donghua University, 2017: 57-101.
[7] 彭书逸. 黄麻纤维/聚丙烯车用复合材料成型工艺及其性能研究[D]. 长沙: 湖南大学, 2018: 40-58.
PENG Shuyi. Study on the molding process and properties of Jute fiber reinforced polypropylene composite for automobile[D]. Changsha: Hunan University, 2018: 40-58.
[8] 刘成诚. PLA/黄麻多层混纤复合材料耐老化性能的研究[D]. 杭州:浙江理工大学, 2015: 25-49.
LIU Chengcheng. The research of resistance aging performance of the PLA/jute multi-layer composite materials [D]. Hangzhou: Zhejiang Sci-Tech University, 2015: 25-49.
[9] 任超. 苎麻/聚乙烯复合材料热氧老化性能与机理[D]. 南京: 南京林业大学, 2009: 20-62.
REN Chao. Study on thermos-oxidative aging of the ramie fiber/polyethylene composites properties and its mechanism[D]. Nanjing: Nanjing Forestry University, 2009: 20-62.
[10] 雷文. 麻纤维/聚合物复合材料[J]. 合成树脂及塑料, 2009,26(3):67-73.
LEI Wen. Fibrilia/polymer composites[J]. China Synthetic Resin and Plastics, 2009,26(3):67-73.
[11] BETIANA A A, MARÍA M R, NORMA E M. Creep and dynamic mechanical behavior of PP-jute composites: Effect of the interfacial adhesion[J]. Composites Part A: Applied Science and Manufacturing, 2007,38(6):1507-1516.
doi: 10.1016/j.compositesa.2007.01.003
[12] HAO A, CHEN Y Z, CHEN J Y. Creep and recovery behavior of kenaf/polypropylene nonwoven com-posites[J]. Journal of Applied Polymer Science, 2014,131(17):8864-8874.
[13] MARCO M, MARIA M, VINCENZO F. Creep behavior of poly (lactic acid) based biocomposites[J]. Materials, 2017,10(4):395-407.
doi: 10.3390/ma10040395
[14] 杨香莲, 韦春, 吕建, 等. 剑麻纤维处理方法对SF/PF共混复合材料动态力学性能的影响[J]. 高分子材料科学与工程, 2010,26(2):96-98.
YANG Xianglian, WEI Chun, LV Jian, et al. Effects of sisal fiber treatment on dynamic mechanical properties of sisal fiber/phenol formaldehyde resin hybrid compo-sites[J]. Polymer Materials Sciences and Engineering, 2010,26(2):96-98.
[15] 盛旭敏, 李又兵. 聚合物基天然植物纤维增强复合材料研究进展[J]. 化工新型材料, 2012,40(10):1-3.
SHENG Xumin, LI Youbing. Recent development of natural fiber reinforced polymer composites[J]. New Chemical Materials, 2012,40(10):1-3.
[16] 盛旭敏. 麻纤维/异种纤维/聚合物复合材料研究进展[J]. 化工新型材料, 2018,46(12):238-241, 246.
SHENG Xumin. Research progress of fibrilia and other fiber hybrid polymer composite[J]. New Chemical Materials, 2018,46(12):238-241, 246.
[17] 汪泽幸, 吴波, 何斌, 等. 循环何在下黄麻纤维/聚乙烯复合材料的残余变形演化与能量耗散特性[J]. 产业用纺织品, 2019,37(10):25-29, 42.
WANG Zexing, WU Bo, HE Bin, et al. Residual deformation evolution and energy dissipation characteristics of jute fiber/polyethylene composites under cyclic loading[J]. Technical Textiles, 2019,37(10):25-29, 42.
[18] 陈丽华. 弹力针织物的疲劳测试方法[J]. 纺织学报, 2014,35(12):57-62.
CHEN Lihua. Research on test method for spandex fatigue of elastic warp knitted fabrics[J]. Journal of Textile Research, 2014,35(12):57-62.
[19] 徐国平, 丁新波, 涂杨松, 等. 柔性涤纶吊装捆绑带的耐动态疲劳性能[J]. 纺织学报, 2015,36(2):66-70.
XU Guoping, DING Xinbo, TU Yangsong, et al. Dynamic fatigue resistance of webbing sling with high-tenacity PET fiber[J]. Journal of Textile Research, 2015,36(2):66-70.
[20] 汪泽幸, 朱文佳, 何斌, 等. 单轴多级循环加载下聚氯乙烯膜材料的力学行为与能量耗散[J]. 纺织学报, 2019,40(6):20-26.
WANG Zexing, ZHU Wenjia, HE Bin, et al. Mechanical behavior and energy dissipation of polyvinyl chloride membrane under uniaxial multi-level cyclic loading[J]. Journal of Textile Research, 2019,40(6):20-26.
[21] DROZDOV A D. Cyclic viscoelastoplasticity and low-cycle fatigue of polymer composites[J]. International Journal of Solids and Structures, 2011,48(13):2026-2040.
doi: 10.1016/j.ijsolstr.2011.03.009
[22] FOTOUH A, WOLODKO J, LIPSETT M G. Fatigue of natural fiber thermoplastic composites[J]. Composites Part B: Engineering, 2014,62(1):175-182.
doi: 10.1016/j.compositesb.2014.02.023
[23] 潘应熊, 童小燕, 李斌. 复合材料疲劳性能的能量耗散试验研究[J]. 强度与环境, 2009,36(1):51-56.
PAN Yingxiong, TONG Xiaoyan, LI Bin. Experimental research on fatigue behavior of composites using energy dissipation methodology[J]. Structure and Environment Engineering, 2009,36(1):51-56.
[24] SPRINGER G S, HUANG H, CHRISTENSEN R M. Predicting failure in composite laminates using dissipated energy[J]. Journal of Composite Materials, 2003,37(23):2073-2099.
doi: 10.1177/002199803035187
[1] LIAO He, WANG Jianning, ZHANG Dongjian, GAN Xuehui, ZHANG Yumei, WANG Huaping. Numerical simulation of interface distribution of side-by-side bi-component melt in orifice [J]. Journal of Textile Research, 2021, 42(01): 30-34.
[2] YANG Yaru, SHEN Xiaojun, TANG Bolin, NIU Mei. Halogen-free flame retardant finishing of ultra-high molecular weight polyethylene fiber [J]. Journal of Textile Research, 2020, 41(11): 109-115.
[3] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[4] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber#br# [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[5] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel / polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[6] WANG Xiaochun, ZHANG Jianfei, ZHANG Liping, WANG Nana, YAN Jinlong, ZHAO Guoliang. Influence of extreme hydrophobic dye structure on dyeing properties of ultrahigh molecular weight polyethylene fibers [J]. Journal of Textile Research, 2020, 41(03): 78-83.
[7] GUO Zengge, JIANG Zhaohui, JIA Zhao, PU Congcong, LI Xin, CHENG Bowen. Influence of pressure on rheological behavior of polyethylene terephthalate-polyamide 6 copolymer/polyamide 6 blends [J]. Journal of Textile Research, 2019, 40(12): 27-31.
[8] HAN Ye, ZHANG Hui, ZHU Guoqing, WU Hailiang. Effect of polyethylene glycol on photocatalytic properties of polyethylene terephthalate fibers treated with titanium sulfate under hydrothermal conditions [J]. Journal of Textile Research, 2019, 40(10): 33-41.
[9] LIU Jian, MAO Jinlu, PENG Li, CAI Lingyun, ZHENG Xuming, ZHANG Fushan. Performance and regulation of hydrophilic oil agent for polyethylene-polypropylene nonwoven fabrics [J]. Journal of Textile Research, 2019, 40(09): 114-121.
[10] ZHANG Heng, ZHEN Qi, LIU Yong, SONG Weimin, LIU Rangtong, ZHANG Yifeng. Air filtration performance and morphological features of polyethylene glycol/polypropylene composite fibrous materials with embedded structure [J]. Journal of Textile Research, 2019, 40(09): 28-34.
[11] ZHOU Ling, JIN Xiangyu. Controllability of bead structure in hot air-through bonded nonwovens and crystallization kinetics thereof [J]. Journal of Textile Research, 2019, 40(08): 27-34.
[12] XIAO Chuanmin, XIAO Changfa, ZHANG Tai, WANG Xinya. Structure and properties of braided tube reinforced polylactic acid hollow fiber membranes [J]. Journal of Textile Research, 2019, 40(08): 20-26.
[13] WU Liwei, WANG Wei, LIN Jiahorng, JIANG Qian. Preparation and mechanical properties of aramid/ ultra-high molecular weight polyethylene fabric reinforced polyurethane sandwich composite [J]. Journal of Textile Research, 2019, 40(07): 64-70.
[14] LI Nana, LU Qingchen, YIN Weiwei, XIAO Changfa. Influence of cooling temperature on structure and properties of polyvinylidene fluoride/ultrahigh-molecular-weight polyethylene blends hollow fiber membrane [J]. Journal of Textile Research, 2019, 40(07): 8-12.
[15] WANG Zexing, ZHU Wenjia, HE Bin, LIU Chao. Mechanical behavior and energy dissipation of polyvinyl chloride membrane under uniaxial multi-level cyclic loading [J]. Journal of Textile Research, 2019, 40(06): 20-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!