Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (10): 188-196.doi: 10.13475/j.fzxb.20191106409
• Comprehensive Review • Previous Articles Next Articles
ZHAI Li'na1(), LI Jun2,3, YANG Yunchu1
CLC Number:
[1] |
LEE Y M, BARKER R L. Thermal protective performance of heat-resistant fabrics in various high intensity heat exposures[J]. Textile Research Journal, 1987,57(3):123-132.
doi: 10.1177/004051758705700301 |
[2] |
CAMENZIND M A, DALE D J, ROSSI R M. Manikin test for flame engulfment evaluation of protective clothing: historical review and development of a new ISO standard[J]. Fire and Materials, 2007,31(5):285-295.
doi: 10.1002/(ISSN)1099-1018 |
[3] |
ZHAI L, CAMENZIND M, LI J, et al. Study on different finite difference methods at skin interface for burn prediction in protective clothing evaluation[J]. Fire and Materials, 2017,41(8):1027-1039.
doi: 10.1002/fam.v41.8 |
[4] |
ZHAI L, LI J. Prediction methods of skin burn for performance evaluation of thermal protective clothing[J]. Burns, 2015,41(7):1385-1396.
doi: 10.1016/j.burns.2015.02.019 pmid: 25816966 |
[5] | BEHNKE W P, GESHURY A J, BARKER R L. Thermo-man and thermo-leg: large scale test methods for evaluating thermal protective performance[J]. Performance of Protective Clothing, 1992,1133:266. |
[6] |
TRENT L C, RESCH W A, COPPARI L A, et al. Design and construction of a thermally-instrumented mannequin for measuring the burn injury potential of wearing apparel[J]. Textile Research Journal, 1979,49(11):639-647.
doi: 10.1177/004051757904901104 |
[7] |
NORTON M J T, KADOLPH S J, JOHNSON R F, et al. Design, construction, and use of minnesota woman, a thermally instrumented mannequin[J]. Textile Research Journal, 1985,55(1):5-12.
doi: 10.1177/004051758505500102 |
[8] |
NORTON M J T, JOHNSON R F, JORDAN K A. Assessment of flammability hazard and its relationship to price for women's nightgowns[J]. Textile Research Journal, 1984,54(11):748-760.
doi: 10.1177/004051758405401108 |
[9] | DALE J, CROWN E, ACKERMAN M, et al. Instrumented mannequin evaluation of thermal protective clothing[C]// MCBRIARTY J, HENRY N. Performance of Protective Clothing: Fourth Volume. West Conshohocken: ASTM International, 1992: 717-734. |
[10] |
SONG Guowen, PASKALUK S, SATI R, et al. Thermal protective performance of protective clothing used for low radiant heat protection[J]. Textile Research Journal, 2011,81(3):311-323.
doi: 10.1177/0040517510380108 |
[11] | 王敏, 李俊, 李小辉. 燃烧假人在火场热防护服装研究中的应用[J]. 纺织学报, 2013,34(3):154-160. |
WANG Min, LI Jun, LI Xiaohui. Application of flame manikin in thermal protective clothing research[J]. Journal of Textile Research, 2013,34(3):154-160. | |
[12] |
LI J, ZHAO M, XIE Y, et al. Thermal shrinkage of fabrics used for out layer of firefighter protective clothing under flash fire[J]. Fire and Materials, 2015,39(8):732-740.
doi: 10.1002/fam.v39.8 |
[13] |
STOLL A M, GREENE L C. Relationship between pain and tissue damage due to thermal radiation[J]. Journal of Applied Physiology, 1959,14(3):373-382.
doi: 10.1152/jappl.1959.14.3.373 pmid: 13654166 |
[14] |
MANDAL S, SONG G. Thermal sensors for performance evaluation of protective clothing against heat and fire: a review[J]. Textile Research Journal, 2015,85(1):101-112.
doi: 10.1177/0040517514542864 |
[15] | HUMMEL A. Development of a heat flux sensor to predict skin burn injury for the fingers of the PyroHands TM fire test system [D]. Raleigh: North Carolina State University, 2011: 26-36. |
[16] | GRIMES R, MULLIGAN J, HAMOUDA H, et al. The design of a surface heat flux transducer for use in fabric thermal protection testing[C]// JOHNSON J, MANSDORF S. Performance of Protective Clothing: Fifth Volume. West Conshohocken: ASTM International, 1996: 607-625. |
[17] | SIPE J E. Development of an instrumented dynamic mannequin test to rate the thermal protection provided by protective clothing[D]. Worcester: Worcester Polytechnic Institute, 2004: 36-43. |
[18] | ELLISON A D. Thermal manikin testing of fire fighter ensembles[D]. Worcester: Worcester Polytechnic Institute, 2006: 39-43. |
[19] |
BEHNKE W P. Predicting flash fire protection of clothing from laboratory tests using second-degree burn to rate performance[J]. Fire and Materials, 1984,8(2):57-63.
doi: 10.1002/(ISSN)1099-1018 |
[20] | 付雪. 圆箔式热流传感器的设计与实现[D]. 南京: 南京理工大学, 2014: 1-9. |
FU Xue. The design and development of the gardon heat flux sensor[D]. Nanjing: Nanjing University of Science & Technology, 2014: 1-9. | |
[21] |
MURTHY A V, TSAI B K, SAUNDERS R D. High-heat-flux sensor calibration using black-body radiation[J]. Metrologia, 1998,35(4):501.
doi: 10.1088/0026-1394/35/4/50 |
[22] | 魏元, 王新, 徐岱. Gardon式圆箔热流传感器减振抗冲击和耐高温性能优化[J]. 计测技术, 2012,32(6):46-49. |
WEI Yuan, WANG Xin, XU Dai. Improvements of impact resistance and high-temperature resistance of gardon heat flux sensor[J]. Metrology & Measurement Technology, 2012,32(6):46-49. | |
[23] | TORVI D A. Heat transfer in thin fibrous materials under high heat flux conditions[D]. Edmonton, Alberta: University of Alberta, 1997: 147-149. |
[24] | 李小辉. 防火服装热防护性能的测评及影响因素研究[D]. 上海: 东华大学, 2012: 61-77. |
LI Xiaohui. Study on the evaluation and influence factors of thermal protective performance of flame-resistant clothing[D]. Shanghai: Donghua University, 2012: 61-77. | |
[25] | TICKNER E, BENDLER R. Thermo-man: super textile tester[J]. Instruments and Control System, 1974,47:39-42. |
[26] | 翟丽娜. 面向热防护服装性能测评的皮肤模拟及烧伤预测方法研究[D]. 上海: 东华大学, 2018: 93-98. |
ZHAI Lina. Study on the skin simulation and burn prediction methods for performance evaluation of thermal protective clothing[D]. Shanghai: Donghua University, 2018: 93-98. | |
[27] |
STEKETEE J. Spectral emissivity of skin and pericardium[J]. Physics in Medicine and Biology, 1973,18(5):686.
doi: 10.1088/0031-9155/18/5/307 pmid: 4758213 |
[28] |
BOYLAN A, MARTIN C J, GARDNER G G. Infrared emissivity of burn wounds[J]. Clinical Physics and Physiological Measurement, 1992,13(2):125.
doi: 10.1088/0143-0815/13/2/003 pmid: 1499254 |
[29] | GAGNON B D. Evaluation of new test methods for fire-fighting clothing[D]. Worcester: Worcester Polytechnic Institute, 2000: 25-49. |
[30] |
GAŠPERIN M, JURICID . The uncertainty in burn prediction as a result of variable skin parameters: An experimental evaluation of burn-protective outfits[J]. Burns, 2009,35(7):970-982.
doi: 10.1016/j.burns.2008.12.018 |
[31] | WATSON K. From radiant protective performance to RadMan TM the role of clothing materials in protecting against radiant heat exposures in wildland forest fires [D]. Raleigh: North Carolina State University, 2014: 57-62. |
[32] | WAGGONER M, BURKE R. Design of a layered heat flux sensor to replicate human skin surface tem-perature[C]// COTTER D J, LUCAS S, MUNDEL T. Proceedings of the 15th International conference on environmental ergonomics. Queenstown: International Society for Environmental Ergonomics, 2013: 222-225. |
[33] |
ZHAI L, SPANO F, LI J, et al. Development of a multi-layered skin simulant for burn injury evaluation of protective fabrics exposed to low radiant heat[J]. Fire and Materials, 2019,43(2):144-152.
doi: 10.1002/fam.v43.2 |
[34] |
BRUIN D D M, BREMMER R H, KODACH V M, et al. Optical phantoms of varying geometry based on thin building blocks with controlled optical properties[J]. Journal of Biomedical Optics, 2010. DOI: 10.1117/1.3369003.
doi: 10.1117/1.JBO.25.12.126502 pmid: 33325186 |
[35] |
KHAN G M, FRUM Y, SARHEED O, et al. Assessment of drug permeability distributions in two different model skins[J]. International Journal of Pharmaceutics, 2005,303(1-2):81-87.
doi: 10.1016/j.ijpharm.2005.07.005 pmid: 16102922 |
[36] | TIAN M, WANG Z, LI J. 3D numerical simulation of heat transfer through simplified protective clothing during fire exposure by CFD[J]. International Journal of Heat & Mass Transfer, 2016,93:314-321. |
|