Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (10): 188-196.doi: 10.13475/j.fzxb.20191106409

• Comprehensive Review • Previous Articles     Next Articles

Development and current state of thermal sensors used for testing thermal protective clothing

ZHAI Li'na1(), LI Jun2,3, YANG Yunchu1   

  1. 1. School of International Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Fashion and Design, Donghua University, Shanghai 200051, China
    3. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2019-11-28 Revised:2020-07-07 Online:2020-10-15 Published:2020-10-27

Abstract:

In order to summarize the evaluation principles of the thermal sensors and to identify research gaps in this area, this paper reviewed and analyzed the construction structures, data collection methods, heat transfer models, application areas and test quality of different thermal sensors. It is understood that the copper sensors have a better test stability, while its thermal properties are too different from the human skin, which may result in an underestimation of the potential skin burn injury. Skin simulants, on the other hand, are found to be able to better simulate the thermal reaction of the human skin, but with limited applications. It is reasonable to believe that the copper sensors will be mainly used for the standard test methods in future development, and the skin simulants would need further technical improvement. It may take more considerations on the simulation of the heat transfer inside human skin for the development of the new thermal sensors.

Key words: thermal protective clothing, thermal sensor, skin simulant sensor, skin burn injury, evaluation of thermal protective performance

CLC Number: 

  • TS941.731

Fig.1

Copper slug calorimeter"

Fig.2

Pyrocal sensor"

Tab.1

Materials of skin simulants and their thermal inertias"

设计出处 年份 材料名称 材料组成 热惰性/
(J·m-2·℃-1·S-1/2)
美国NML实验室 1956 无机材料填充物(石英、滑石等)填充到塑性
树脂(尿素、三聚氰胺甲醛)中塑形而成
1 218
Thermo-man假人 [25] 1974 热塑性树脂
Trent等[6] 1979 玻璃纤维环氧树脂 1 349
明尼苏达大学[7] 1985
阿尔伯特大学[9] 1991 Colorceran 无机材料,由钙、铝、硅酸和石棉纤维混合而成 1 483
美国伍斯特理工学院[17] 2004 Macor? 无机材料,55%氟金云母和45%硼硅玻璃 1 704
东华大学[26] 2018

Fig.3

Structures of kin simulants. (a) Slab; (b) Cylinder; (c) With Shells"

Fig.4

Multi-layered skin simulant"

Fig.5

Heat transfer models for copper sensors and skin simulants. (a) Copper sensor; (b) Skin simulant"

Fig.6

Surface temperature rises of copper sensor, skin simulant and human skin (numerical simulation) during heat exposures of 25 kW/m2"

Tab.2

Comparison of the copper sensors and skin simulants for application"

应用特征 传热模型 响应速度 信号稳定性 耐温程度 便捷与耐用性 皮肤的模拟效果
金属类传感器 集总热容模型 较快 信号稳定性较好 可达1 000 ℃ 便捷耐用 无法模拟皮肤的温度响应曲线
皮肤模拟传感器 内部均匀温度场 较慢 信号容易受到干扰 最高为300~400 ℃ 不易清洗 与人体皮肤的温升响应曲线较吻合
[1] LEE Y M, BARKER R L. Thermal protective performance of heat-resistant fabrics in various high intensity heat exposures[J]. Textile Research Journal, 1987,57(3):123-132.
doi: 10.1177/004051758705700301
[2] CAMENZIND M A, DALE D J, ROSSI R M. Manikin test for flame engulfment evaluation of protective clothing: historical review and development of a new ISO standard[J]. Fire and Materials, 2007,31(5):285-295.
doi: 10.1002/(ISSN)1099-1018
[3] ZHAI L, CAMENZIND M, LI J, et al. Study on different finite difference methods at skin interface for burn prediction in protective clothing evaluation[J]. Fire and Materials, 2017,41(8):1027-1039.
doi: 10.1002/fam.v41.8
[4] ZHAI L, LI J. Prediction methods of skin burn for performance evaluation of thermal protective clothing[J]. Burns, 2015,41(7):1385-1396.
doi: 10.1016/j.burns.2015.02.019 pmid: 25816966
[5] BEHNKE W P, GESHURY A J, BARKER R L. Thermo-man and thermo-leg: large scale test methods for evaluating thermal protective performance[J]. Performance of Protective Clothing, 1992,1133:266.
[6] TRENT L C, RESCH W A, COPPARI L A, et al. Design and construction of a thermally-instrumented mannequin for measuring the burn injury potential of wearing apparel[J]. Textile Research Journal, 1979,49(11):639-647.
doi: 10.1177/004051757904901104
[7] NORTON M J T, KADOLPH S J, JOHNSON R F, et al. Design, construction, and use of minnesota woman, a thermally instrumented mannequin[J]. Textile Research Journal, 1985,55(1):5-12.
doi: 10.1177/004051758505500102
[8] NORTON M J T, JOHNSON R F, JORDAN K A. Assessment of flammability hazard and its relationship to price for women's nightgowns[J]. Textile Research Journal, 1984,54(11):748-760.
doi: 10.1177/004051758405401108
[9] DALE J, CROWN E, ACKERMAN M, et al. Instrumented mannequin evaluation of thermal protective clothing[C]// MCBRIARTY J, HENRY N. Performance of Protective Clothing: Fourth Volume. West Conshohocken: ASTM International, 1992: 717-734.
[10] SONG Guowen, PASKALUK S, SATI R, et al. Thermal protective performance of protective clothing used for low radiant heat protection[J]. Textile Research Journal, 2011,81(3):311-323.
doi: 10.1177/0040517510380108
[11] 王敏, 李俊, 李小辉. 燃烧假人在火场热防护服装研究中的应用[J]. 纺织学报, 2013,34(3):154-160.
WANG Min, LI Jun, LI Xiaohui. Application of flame manikin in thermal protective clothing research[J]. Journal of Textile Research, 2013,34(3):154-160.
[12] LI J, ZHAO M, XIE Y, et al. Thermal shrinkage of fabrics used for out layer of firefighter protective clothing under flash fire[J]. Fire and Materials, 2015,39(8):732-740.
doi: 10.1002/fam.v39.8
[13] STOLL A M, GREENE L C. Relationship between pain and tissue damage due to thermal radiation[J]. Journal of Applied Physiology, 1959,14(3):373-382.
doi: 10.1152/jappl.1959.14.3.373 pmid: 13654166
[14] MANDAL S, SONG G. Thermal sensors for performance evaluation of protective clothing against heat and fire: a review[J]. Textile Research Journal, 2015,85(1):101-112.
doi: 10.1177/0040517514542864
[15] HUMMEL A. Development of a heat flux sensor to predict skin burn injury for the fingers of the PyroHands TM fire test system [D]. Raleigh: North Carolina State University, 2011: 26-36.
[16] GRIMES R, MULLIGAN J, HAMOUDA H, et al. The design of a surface heat flux transducer for use in fabric thermal protection testing[C]// JOHNSON J, MANSDORF S. Performance of Protective Clothing: Fifth Volume. West Conshohocken: ASTM International, 1996: 607-625.
[17] SIPE J E. Development of an instrumented dynamic mannequin test to rate the thermal protection provided by protective clothing[D]. Worcester: Worcester Polytechnic Institute, 2004: 36-43.
[18] ELLISON A D. Thermal manikin testing of fire fighter ensembles[D]. Worcester: Worcester Polytechnic Institute, 2006: 39-43.
[19] BEHNKE W P. Predicting flash fire protection of clothing from laboratory tests using second-degree burn to rate performance[J]. Fire and Materials, 1984,8(2):57-63.
doi: 10.1002/(ISSN)1099-1018
[20] 付雪. 圆箔式热流传感器的设计与实现[D]. 南京: 南京理工大学, 2014: 1-9.
FU Xue. The design and development of the gardon heat flux sensor[D]. Nanjing: Nanjing University of Science & Technology, 2014: 1-9.
[21] MURTHY A V, TSAI B K, SAUNDERS R D. High-heat-flux sensor calibration using black-body radiation[J]. Metrologia, 1998,35(4):501.
doi: 10.1088/0026-1394/35/4/50
[22] 魏元, 王新, 徐岱. Gardon式圆箔热流传感器减振抗冲击和耐高温性能优化[J]. 计测技术, 2012,32(6):46-49.
WEI Yuan, WANG Xin, XU Dai. Improvements of impact resistance and high-temperature resistance of gardon heat flux sensor[J]. Metrology & Measurement Technology, 2012,32(6):46-49.
[23] TORVI D A. Heat transfer in thin fibrous materials under high heat flux conditions[D]. Edmonton, Alberta: University of Alberta, 1997: 147-149.
[24] 李小辉. 防火服装热防护性能的测评及影响因素研究[D]. 上海: 东华大学, 2012: 61-77.
LI Xiaohui. Study on the evaluation and influence factors of thermal protective performance of flame-resistant clothing[D]. Shanghai: Donghua University, 2012: 61-77.
[25] TICKNER E, BENDLER R. Thermo-man: super textile tester[J]. Instruments and Control System, 1974,47:39-42.
[26] 翟丽娜. 面向热防护服装性能测评的皮肤模拟及烧伤预测方法研究[D]. 上海: 东华大学, 2018: 93-98.
ZHAI Lina. Study on the skin simulation and burn prediction methods for performance evaluation of thermal protective clothing[D]. Shanghai: Donghua University, 2018: 93-98.
[27] STEKETEE J. Spectral emissivity of skin and pericardium[J]. Physics in Medicine and Biology, 1973,18(5):686.
doi: 10.1088/0031-9155/18/5/307 pmid: 4758213
[28] BOYLAN A, MARTIN C J, GARDNER G G. Infrared emissivity of burn wounds[J]. Clinical Physics and Physiological Measurement, 1992,13(2):125.
doi: 10.1088/0143-0815/13/2/003 pmid: 1499254
[29] GAGNON B D. Evaluation of new test methods for fire-fighting clothing[D]. Worcester: Worcester Polytechnic Institute, 2000: 25-49.
[30] GAŠPERIN M, JURICID . The uncertainty in burn prediction as a result of variable skin parameters: An experimental evaluation of burn-protective outfits[J]. Burns, 2009,35(7):970-982.
doi: 10.1016/j.burns.2008.12.018
[31] WATSON K. From radiant protective performance to RadMan TM the role of clothing materials in protecting against radiant heat exposures in wildland forest fires [D]. Raleigh: North Carolina State University, 2014: 57-62.
[32] WAGGONER M, BURKE R. Design of a layered heat flux sensor to replicate human skin surface tem-perature[C]// COTTER D J, LUCAS S, MUNDEL T. Proceedings of the 15th International conference on environmental ergonomics. Queenstown: International Society for Environmental Ergonomics, 2013: 222-225.
[33] ZHAI L, SPANO F, LI J, et al. Development of a multi-layered skin simulant for burn injury evaluation of protective fabrics exposed to low radiant heat[J]. Fire and Materials, 2019,43(2):144-152.
doi: 10.1002/fam.v43.2
[34] BRUIN D D M, BREMMER R H, KODACH V M, et al. Optical phantoms of varying geometry based on thin building blocks with controlled optical properties[J]. Journal of Biomedical Optics, 2010. DOI: 10.1117/1.3369003.
doi: 10.1117/1.JBO.25.12.126502 pmid: 33325186
[35] KHAN G M, FRUM Y, SARHEED O, et al. Assessment of drug permeability distributions in two different model skins[J]. International Journal of Pharmaceutics, 2005,303(1-2):81-87.
doi: 10.1016/j.ijpharm.2005.07.005 pmid: 16102922
[36] TIAN M, WANG Z, LI J. 3D numerical simulation of heat transfer through simplified protective clothing during fire exposure by CFD[J]. International Journal of Heat & Mass Transfer, 2016,93:314-321.
[1] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[2] HE Jiazhen, XUE Xiaoyu, WANG Min, LI Jun. Predicting thermal protective performance of clothing based on maximum attenuation factor model [J]. Journal of Textile Research, 2020, 41(06): 112-117.
[3] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[4] CHEN Si, LU Yehu. Influence of air gap size on steam protective performance of fireproof fabric [J]. Journal of Textile Research, 2019, 40(10): 141-146.
[5] ZHANG Hongyue, LI Xiaohui. Evaluation on radiation thermal performance of honeycomb sandwich structure of thermal protective clothing fabrics [J]. Journal of Textile Research, 2019, 40(10): 147-151.
[6] . Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 111-118.
[7] . Devilopment and current status on performance test and evaluation of thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(07): 162-168.
[8] LU Ye-Hu, LI Jun, WANG Yun-Yi. Development of heat and moisture transfer model in thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(1): 151-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!