Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 48-52.doi: 10.13475/j.fzxb.20200400805

• Textile Engineering • Previous Articles     Next Articles

Enhanced process optimization and mechanism analysis of thermal adhesion for air jet vortex spun yarn

CHEN Yuxiang1,2, YU Meiya1, DONG Zhengmei3, MIAO Lulu1, LIN Yanyan1, ZOU Zhuanyong1()   

  1. 1. Key Laboratory of Clean Dyeing and Finishing Technology in Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Xilinmen Furniture Co., Ltd., Shaoxing, Zhejiang 312000, China
  • Received:2020-04-03 Revised:2020-08-19 Online:2020-11-15 Published:2020-11-26
  • Contact: ZOU Zhuanyong E-mail:zouzhy@usx.edu.cn

Abstract:

In order to explore effective ways to improve the strength and elongation properties of air jet vortex spun yarn, the effect of the heat treatment temperature, heat treatment speed and draw ratio on the breaking strength and elongation of viscose / low melting point polyester air jet vortex spun yarn was studied based on the Box-Behnken Design response surface method. The optimal heat treatment process parameters were determined and the mechanism of thermal adhesion to reinforce the air jet vortex spun yarn was explored. The results show that the heat treatment temperature, heat treatment speed, draw ratio, the secondary term of heat treatment speed, heat treatment speed and draw ratio interaction terms have obvious influence on the yarn breaking strength. The elongation at break is significantly affected by the heat treatment temperature and heat treatment speed, while the influence of draw ratio is not obvious. The best parameter values of heat treatment process obtained through the optimization are heat treatment temperature 193 ℃, heat treatment speed 90 m/min, draw ratio 1.00. The yarn breaking strength is increased by 10.7% compared with the original yarn, and the elongation is increased by 2.8% after optimization. Furthermore, it is found that the heating deformation, point-like and agglomerated heat-bonding of low-melting polyester fibers are the key to achieve thermal bonding enhancement of air jet vortex spun yarn.

Key words: air jet vortex spinning, strength and elongation property, thermal adhesion process, response surface methodology

CLC Number: 

  • TS131

Tab.1

Factor level table of heat treatment process for yarn"

水平 热处理温度
x1/℃
热处理速度
x2/(m·min-1)
牵伸倍数
x3
-1 120 10 1.00
0 160 50 1.06
1 200 90 1.12

Tab.2

BBD response surface design scheme and experimental results"

运行序  x1  x2  x3 断裂强力
Y1/cN
断裂伸长率
Y2/%
1 -1 -1 0 272.867 5 10.648
2 1 -1 0 274.894 7 9.470
3 -1 1 0 256.266 1 11.234
4 1 1 0 262.903 3 10.964
5 -1 0 -1 257.166 4 11.273
6 1 0 -1 267.234 8 10.716
7 -1 0 1 251.401 3 10.667
8 1 0 1 260.337 3 10.492
9 0 -1 -1 270.825 5 10.587
10 0 1 -1 264.601 9 11.209
11 0 -1 1 276.272 4 10.153
12 0 1 1 254.506 0 11.303
13 0 0 0 258.390 0 10.837
14 0 0 0 263.241 2 10.982
15 0 0 0 261.864 4 11.209

Tab.3

Regression analysis of response surface quadratic"

方差来源 断裂强力Y1 断裂伸长率Y2
F P F P
x1 18.16 0.002 16.82 0.003
x2 75.96 0.000 52.51 0.000
x3 7.11 0.026 4.84 0.059
x12 5.50 0.047
x22 31.76 0.000 4.32 0.071
x1x2 5.84 0.042
x2x3 11.46 0.008
回归模型 28.89 0.000 14.86 0.001
失拟项 0.80 0.657 1.01 0.576

Fig.1

Contour map of heat treatment process response value (yarn breaking strength). (a)Heat treatment temperature and speed; (b)Heat treatment temperature and draw ratio;(c)Heat treatment speed and draw ratio"

Fig.2

Contour map of heat treatment process response value (yarn breaking elongation ratio). (a)Heat treatment temperature and speed; (b) Heat treatment temperature and draw ratio; (c) Heat treatment speed and draw ratio"

Tab.4

Multi-response optimization"

类别 断裂强力Y1/cN 断裂伸长率Y2/%
范围 >250 >9
目标 274.9 11.3
权重 50 50

Tab.5

Optimization and verification of heat treatment process"

x1/℃ x2/
(m·min-1)
x3 断裂强力Y1/cN 断裂伸长率Y2/%
预测 实测 预测 实测
0.818 2 1 -1 268.45 275.55 11.25 11.37

Fig.3

Fiber morphology of low melting point polyester air jet vortex spun yarns before and after heat treatment. (a) Untreated fiber (×300); (b) Thermal deformation after heat treatment (×1 000); (c) Point-like shape of melt bond (×1 000); (d) Agglomerated shape of melt bond (×1 000) "

[1] ERDUMLU N, OZIPEK B, OZTUNA A S, et al. Investigation of vortex spun yarn properties in comparison with conventional ring and open-end rotor spun yarns[J]. Textile Research Journal, 2009,79(7):585-595.
doi: 10.1177/0040517508093590
[2] ORTLEK H G, ONAL L. Comparative study on the characteristics of knitted fabrics made of vortex-spun viscose yarns[J]. Fibers and Polymers, 2008,9(2):194-199.
doi: 10.1007/s12221-008-0031-3
[3] BECEREN Y, NERGIS B U. Comparison of the effects of cotton yarns produced by new, modified and conventional spinning systems on yarn and knitted fabric performance[J]. Textile Research Journal, 2008,78(4):297-303.
doi: 10.1177/0040517507084434
[4] 裴泽光, 俞兆昇, 郁崇文. 影响纯涤纶喷气涡流纱强度的因素[J]. 纺织学报, 2008,29(12):22-24.
PEI Zeguang, YU Zhaosheng, YU Chongwen. Effect of parameters on tenacity of polyester MVS yarn[J]. Journal of Textile Research, 2008,29(12):22-24.
[5] ORTLEK H G, ULKU S. Effect of some variables on properties of 100% cotton vortex spun yarn[J]. Textile Research Journal, 2005,75(6):458-461.
doi: 10.1177/0040517505053835
[6] 袁龙超, 李新荣, 郭臻, 等. 喷气涡流纺喷嘴结构对流场影响的研究进展[J]. 纺织学报, 2018,39(1):169-178.
YUAN Longchao, LI Xinrong, GUO Zhen, et al. Research progress on the influence of jet swirl swirl nozzle structure on flow field[J]. Journal of Textile Research, 2018,39(1):169-178.
[7] 林燕燕, 邹专勇, 陈玉香, 等. 喷气涡流纺纱线热黏合增强工艺[J]. 纺织学报, 2019,40(2):58-62.
LIN Yanyan, ZOU Zhuanyong, CHEN Yuxiang, et al. Hot adhesion reinforcement technology of jet vortex spinning yarn[J]. Journal of Textile Research, 2019,40(2):58-62.
[8] 邹专勇. 喷气涡流纺成纱工艺对竹浆纤维色纺纱性能的影响[J]. 纺织学报, 2014,35(2):23-28,38.
ZOU Zhuanyong. Influence of yarn formation process on properties of bamboo pulp fiber colored spun yarn using air jet vortex spinning[J]. Journal of Textile Research, 2014,35(2):23-28,38.
[9] 邹专勇, 程隆棣, 俞建勇, 等. 喷气涡流纱中纤维的空间轨迹研究[J]. 纺织学报, 2008,29(10):25-28,33.
ZOU Zhuanyong, CHENG Longdi, YU Jianyong, et al. Fiber spatial configuration in air jet vortex spun yarn[J]. Journal of Textile Research, 2008,29(10):25-28,33.
[10] ZHENG S, ZOU Z, SHEN W, et al. A study of the fiber distribution in yarn cross section for vortex-spun yarn[J]. Textile Research Journal, 2012,82(15):1579-1586.
doi: 10.1177/0040517511431315
[1] LIN Yanyan, ZOU Zhuanyong, CHEN Yuxiang, YANG Yanqiu. Thermal adhesion enhancement process of air jet vortex spun yarn [J]. Journal of Textile Research, 2019, 40(02): 58-62.
[2] . Prediction model on tensile strength of air jet vortex spinning yarn and its verification [J]. Journal of Textile Research, 2018, 39(10): 32-37.
[3] . Numerical simulation for twisting chamber of air jet vortex spinning based on hollow spindle with spiral guiding grooves [J]. Journal of Textile Research, 2018, 39(09): 139-145.
[4] . Preparation of waterborne polyurethane coating by mechanical foaming based on response surface methodology [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 95-099.
[5] . influence of hollow spindler structure parameters on flow field of air jet vortex spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 135-140.
[6] . Establishment of afterglow brightness model for luminous computer-embroidery fabric by response surface methodology [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 72-75.
[7] . Extracting of lanolin from raw wool with optimized subcritical fluid technology by response surface methodology [J]. Journal of Textile Research, 2015, 36(12): 69-74.
[8] . Influence of yarn formation process on properties of knitted fabrics made of air jet vortex-spun bamboo pulp colored yarns [J]. Journal of Textile Research, 2015, 36(06): 30-36.
[9] . Influence of yarn formation process on properties of bamboo pulp fiber colored spun yarn using air jet vortex spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 23-0.
[10] SONG Yeping;XIONG Jie;XIE Junjun;HUO Pengfei;WANG Yongpan;SUN Fang. Process optimization and prediction model of diameter for electrospun zein nanofibers [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(07): 6-9.
[11] LIANG Fangge;CHENG Longdi;LIU Yan;LIU Xiaozhen;SHAO Nan. Study on the stress relaxation mechanism of air jet vortex spun yarns with naturally colored cotton [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(8): 27-29.
[12] 邹专勇;俞建勇;薛文良;程隆棣. Analysis of the cause leading to generation of thin places on the air jet vortex spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(7): 21-26.
[13] ZOU Zhuanyong;YU Jianyong;XUE Wenliang;CHENG Longdi. Evaluating the strength of the vortex twist acting on the yarn in air jet vortex spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(5): 19-21.
[14] ZOU Zhuanyong;YU Jianyong;XUE Wenliang;CHENG Longdi. Numerical study of three-dimensional flow field inside the nozzle of air jet vortex spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(2): 86-89.
[15] ZOU Zhuanyong;CHENG Longdi;YU Jianyong;XUE Wenliang. Fiber spatial configuration in air jet vortex spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(10): 25-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!