Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 66-72.doi: 10.13475/j.fzxb.20191100307

• Textile Engineering • Previous Articles     Next Articles

Structures and mechanical properties of typical textile-based artificial ligaments and explants

LIU Mingjie1,2, LIN Jing1,2, GUAN Guoping1,2(), BROCHU G3, GUIDION R3, WANG Lu1,2   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textiles Scienceand Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Department of Surgery, Laval University, Quebec G1V0A6, Canada
  • Received:2019-11-01 Revised:2020-05-15 Online:2020-11-15 Published:2020-11-26
  • Contact: GUAN Guoping E-mail:ggp@dhu.edu.cn

Abstract:

In view of large clinical demand for artificial ligament (AL) products and high elimination rate, the present work reports on research where eleven AL products were investigated comprehensively on their geometric features, textures, and surface morphology. In addition, failure mechanisms of a typical product Stryker?-Meadox were explored in terms of mechanical property, fiber morphology and biodegradation through analysis of explants and virgin samples. The results show that the existing AL products have various structures and different shapes, which is related to their clinical indications, and that the surface abrasion of the samples and internal structural changes of the polymers might be the leading causes of the failure after long-term implantation. The findings of this work provide some insights into optimizing the existing AL products.

Key words: medical textile, artificial ligament, anterior cruciate ligament, explant, failure mechanisms

CLC Number: 

  • TS101.4

Tab.1

Geometric characteristics and structures of 11 artificial ligaments"

试样
编号
宽度/
cm
厚度/
mm
织造
方式
特殊
结构
1# 0.61 0.59 经编 芯壳结构,
芯纱为单丝
2# 0.66 0.87 经编 两端接有末端开有
小孔的塑料管
3# 0.57 0.50 经编 两端接有辅助细线,
细线末尾连接金属丝环
4# 1.77 0.77 机织 一端由细线悬吊,
另一端开有圆孔
5# 4.21 0.40 机织 织带结构
6# 0.44 4.58 经编
机织
经编外壳,
多条机织内芯
7# 0.98 0.76 编织 两端为胶封
8# 0.46 0.47 编织 16股编织结构,
每股中4根编织股纱
9# 0.85 0.56 编织 4股编织结构,
每股中11根编织股纱
10# 1.07 0.67 编织 编织管状结构
11# 0.38 1.60 编织 编织管状结构

Tab.2

Fabric density test results of 1#~3#"

试样编号 密度/(线圈·(5 cm)-1)
横密 纵密
1# 24.8 30.2
2# 45.6 105.3
3# 26.2 91.4

Tab.3

Fabric density test results of 4#~6#"

试样编号 经纬密/(根数·(10 cm)-1)
经密 纬密
4# 39.02 50.24
5# 38.68 51.26
6# 222.87 144.70

Tab.4

Fabric braid density test results of 7#~11#"

试样编号 编织角/(°) 编织节点数/(个·cm-1)
7# 42.34 4.12
8# 34.15 14.16
9# 49.32 0.84
10# 24.68 4.40
11# 37.16 6.67

Fig.1

Textile structure images of 11 textile-based artificial ligaments. (a) Digital camera images; (b) Stereomicroscope images"

Fig.2

Stereomicroscopic images of two samples(×20). (a) Virgin outer shell outside; (b) Virgin outer shell inside;(c) Virgin inner core; (d) Explant outer shell outside;(e) Explant outer shell inside; (f) Explant inner core"

Fig.3

SEM images of two samples(×50). (a) Virgin inner core; (b) Explant inner core;(c) Virgin outer shell inside; (d) Explant outer shell inside;(e) Virgin outer shell outside; (f) Explant outer shell outside"

Fig.4

FT-IR (a) and TGA (b) pattern of monofilament and multifilament used in 6#"

Fig.5

XRD patterns of virgin and explant. (a) Inner core; (b) Outer shell"

Fig.6

Typical strain and stress curves of warp and weft yarns of virgin and explant inner core. (a) Warp yarn; (b) Weft yarn"

[1] SANDERS T L, MARADIT K H, BRYAN A J, et al. Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study[J]. The American Journal of Sports Medicine, 2016.DOI: 10.1177/0363546516629944.
doi: 10.1177/0363546520980109 pmid: 33411565
[2] MARIESWARAN M, ISHITA J, BHAVUK G, et al. A review on biomechanics of anterior cruciate ligament and materials for reconstruction[J]. Applied Bionics and Biomechanics, 2018.DOI: 10.1155/2018/4657824.
pmid: 33273964
[3] PERRONE G S, PROFFEN B L, KIAPOUR A M, et al. Bench-to-bedside: bridge-enhanced anterior cruciate ligament repair.[J] Journal of orthopaedic research, 2017,35:2606-2612
doi: 10.1002/jor.23632 pmid: 28608618
[4] 王荣浩, 温昱, 刘旭, 等. 应用LARS韧带重建术与保守治疗50岁以上膝关节慢性前向不稳定患者的效果比较[J]. 中国综合临床, 2019,35(2):110-115.
WANG Ronghao, WEN Yu, LIU Xu, et al. Comparasion of clinical outcomes of reconstruction by LARS and conservative treatment for patients older than 50 years with chronic forward instability of knee joint[J]. Clinical Medicine of China, 2019,35(2):110-115.
[5] 李宇, 张豪, 王立志, 等. LARS韧带与自体腘绳肌腱重建前交叉韧带的中期疗效比较[J]. 实用骨科杂志, 2019,25(6):509-513.
LI Yu, ZHANG Hao, WANG Lizhi, et al. Medium-term outcomes of anterior cruciate ligament reconstruction with LARS artificial ligament versus hamstring tendon autograft[J]. Journal of Practical Orthopaedics, 2019,25(6):509-513.
[6] GUIDOIN M F, MAROIS Y, BEJUI J, et al. Analysis of retrieved polymer fiber based replacements for the ACL[J]. Biomaterials, 2000,21(23):2461-74.
doi: 10.1016/s0142-9612(00)00114-9 pmid: 11055294
[7] MOUKAIED M S, NACCACHE N R. Reconstruction of anterior cruciate ligament using the Leeds-Keio device-short-term results[J]. Saudi Medical Journal, 1992,13(5):412-416
[8] ROOLKER W, PATT T W, VANDIJK C N, et al. The Gore-Tex prosthetic ligament as a salvage procedure on deficient knees[J]. Knee Surg Sports Traumatol Arthrosc, 2000,8(1):20-25.
doi: 10.1007/s001670050005 pmid: 10663315
[9] MALETIUS W, GILLQUIST J. Long-term results of anterior cruciate ligament reconstruction with a dacron prosjournal: the frequency of osteoarthritis after seven to eleven years[J]. American Journal of Sports Medicine, 1997,25(3):288-293.
[10] SCOTT J T, BRIAN M D, CAMERON J N, et al. Synovitis following anterior cruciate ligament reconstruction using the LARS device[J]. Knee Surgery, Sports Traumatology, Arthroscopy, 2019,27(8).
doi: 10.1007/s00167-018-5283-x pmid: 30421166
[11] LAVOIE P, FLETCHER J, DUVAL N. Patient satisfaction needs as related to knee stability and objective findings after ACL reconstruction using the LARS artificial ligament[J]. Knee, 2000,7(3):157-163.
doi: 10.1016/s0968-0160(00)00039-9 pmid: 10927209
[12] CHEN T, CHEN S. Artificial ligaments applied in anterior cruciate ligament repair and reconstruction: current products and experience[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2020 (34):1-9.
[13] 刘冰, 王璐, 林婧, 等. 4种腔内隔绝术用覆膜支架老化特性的比较研究[J]. 中国生物医学工程学报, 2012(4):634-640.
pmid: 14716864
LIU Bing, WANG Lu, LIN Jing, et al. Comparative aging failing mechanism in four different types of stent-grafts[J]. Chinese Journal of Biomedical Engineering, 2012(4):634-640.
pmid: 14716864
[14] 武亚琼. 疝修补片移出物的结构与性能演变研究[D]. 上海:东华大学, 2018: 11-39.
WU Yaqiaong. The evolution of structure and properties of explanted hernia meshes[D]. Shanghai:Donghua University, 2018: 11-39.
[15] 关国平, 关红涛, 王璐. 韧带损伤及人工韧带应用与研究[J]. 生物医学工程学进展, 2013,34(4):234-238.
GUAN Guoping, GUAN Hongtao, WANG Lu. Ligament injury and application and research of artificial ligaments[J]. Progress in Biomedical Engineering, 2013,34(4):234-238.
[16] 王欢. 聚氨酯表面形貌对细胞分化行为的影响[D]. 广州:华南理工大学, 2018: 5-43.
WANG Huan. Effect of surface topography of polyurethane on cell differentiation behaviours[D]. Guangzhou: South China University of Technology, 2018: 5-43.
[17] 王旭萍, 宋佳, 崔静洁. 多孔材料的生物合成研究进展[J]. 生物加工过程, 2019,17(6):597-603.
WANG Xuping, SONG Jia, CUI Jingjie. Progress in biomimetic synjournal of porous materials[J]. Chinese Journal of Bioprocess Engineering, 2019,17(6):597-603.
[18] 倪卓, 陈晓霞, 朱进普, 等. SEBS/PP共混材料结晶度的测定[J]. 塑料科技, 2019(10):60-65.
NI Zhuo, CHEN Xiaoxia, ZHU Jinpu, et al. Determination of crystallinity of SEBS/PP blends[J]. Plastics Science and Technology, 2019(10):60-65.
[1] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[2] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[3] ZHANG Qian, MAO Jifu, LÜ Luyao, XU Zhongmian, WANG Lu. Abrasion resistance of suture at anchor eyelet for tendon-bone repair and its influencing factors [J]. Journal of Textile Research, 2020, 41(12): 66-72.
[4] DUAN Fangyan, WANG Wenyu, JIN Xin, NIU Jiarong, LIN Tong, ZHU Zhengtao. Research progress in formation of starch fibers and their drug-loaded controlled-release [J]. Journal of Textile Research, 2020, 41(10): 170-177.
[5] QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166.
[6] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks [J]. Journal of Textile Research, 2020, 41(03): 168-174.
[7] . Research progress of biomedical textile artificial blood vessel [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 155-163.
[8] . Progress in technologies for functional modifications of cotton fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 153-157.
[9] Qin Yimin. Application of gelling fibers in functional wound dressings [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(6): 163-0.
[10] Qin Yimin. Strategies for research and development of medical textile materials [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 89-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!