Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 19-26.doi: 10.13475/j.fzxb.20200302108

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers

WANG Liyuan1,2, KANG Weimin1,2, ZHUANG Xupin1,2, JU Jingge1,2, CHENG Bowen1,2()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. State Key Laboratory of Separation Membrane and Membrane Process, Tiangong University, Tianjin 300387, China
  • Received:2020-03-09 Revised:2020-08-14 Online:2020-11-15 Published:2020-11-26
  • Contact: CHENG Bowen E-mail:bowen15@tiangong.edu.cn

Abstract:

To develop high-performance Nafion proton exchange membranes for fuel cells, sulfonated polyethersulfone (SPES) nanofibers with different sulfonation degrees prepared via electrospinning technology were used as additives to construct SPES nanofibers/Nafion composite proton exchange membrane. The effects of solution concentration, spinning voltage and receiving distance on the spinning process and morphology of SPES nanofibers were discussed. Under the optimal process, the effects of SPES nanofibers with different sulfonation degrees on the microstructure, water absorption, swelling, proton conductivity, and methanol permeability of the composite membrane were studied. The results show that under the electrospinning parameters of solution concentration of 30%, spinning voltage of 30 kV and receiving distance of 20 cm, the composite Nafion membrane based on the optimal SPES nanofiber with sulfonation degree of 64% exhibits balanced proton conduction (0.144 S/cm) and methanol permeability (7.58×10-7 cm2/s). The composite membrane presents the best comprehensive performance, which meets the application needs of high-performance methanol fuel cells.

Key words: proton exchange membrane, electrospinning, sulfonated polyethersulfone, nanofiber, proton conductivity, fuel cell

CLC Number: 

  • TM911.48

Fig.1

SEM images (×10 000) and diameter distribution of SPES nanofibers with different concentration"

Fig.2

SEM images (×10 000) and fiber diameter distribution of SPES nanofibers with different spinning voltage"

Fig.3

SEM images (×10 000) and diameter distribution of SPES nanofibers with different tip-collector"

Fig.4

SEM images (×10 000) and diameter distribution of SPES nanofibers with different sulfonation degree"

Fig.5

Surface SEM images of SPES/Nafion composite membranes with different sulfonation degree (×2 000)"

Fig.6

Water uptake and swelling ratios of SPES/Nafion membranes at 40 ℃ and 80 ℃"

Fig.7

Stress-strain curves of SPES/Nafion membranes"

Fig.8

Temperature-dependent proton conductivities of SPES/Nafion composite membranes"

Fig.9

Proton conductivity and methanol permeability of SPES/Nafion membranes at 40 ℃"

[1] 邢丹敏, 刘永浩, 衣宝廉. 燃料电池用质子交换膜的研究现状[J]. 电池, 2005(4):69-71.
XING Danmin, LIU Yonghao, YI Baolian. Research status of proton exchange membrane fuel cell[J]. Battery, 2005(4):69-71.
[2] LIM J W, LEE D, KIM M, et al. Composite structures for proton exchange membrane fuel cells (PEMFC) and energy storage systems (ESS): review[J]. Composite Structures, 2015,134:927-949.
doi: 10.1016/j.compstruct.2015.08.121
[3] SOOD R, CAVALIERE S, JONES D J, et al. Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes[J]. Nano Energy, 2016,26:729-745.
doi: 10.1016/j.nanoen.2016.06.027
[4] CHAE K J, KIM K Y, CHOI M J, et al. Sulfonated polyether ether ketone (SPEEK)-based composite proton exchange membrane reinforced with nanofibers for microbial electrolysis cells[J]. Chemical Engineering Journal, 2014,254:393-398.
doi: 10.1016/j.cej.2014.05.145
[5] YUAN Q, FU Z, WANG Y, et al. Coaxial electrospun sulfonated poly(ether ether ketone) proton exchange membrane for conductivity-strength balance[J]. Journal of Membrane Science, 2020,595:117516.
doi: 10.1016/j.memsci.2019.117516
[6] LEE J R, KIM N Y, LEE M S, et al. SiO2-coated polyimide nonwoven/Nafion composite membranes for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2011,367(1/2):265-272.
doi: 10.1016/j.memsci.2010.11.004
[7] 赵颖会, 顾迎春, 胡斐, 等. 芳香族聚酰胺纳米纤维复合材料研究进展[J]. 纺织学报, 2020,41(1):184-189.
ZHAO Yinghui, GU Yingchun, HU Fei, et al. Research progress of aromatic polyamide nanofiber composites[J]. Journal of Textile Research, 2020,41(1):184-189.
[8] WANG S H, LIN H L. Poly(vinylidene fluoride-co-hexafluoropropylene)/polybenzimidazole blend nanofiber supported Nafion membranes for direct methanol fuel cells[J]. Journal of Power Sources, 2014,257:254-263.
doi: 10.1016/j.jpowsour.2014.01.104
[9] 王航. 纳米纤维改性 Nafion 复合质子交换膜的制备与性能[D]. 天津:天津工业大学, 2016: 31-42.
WANG Hang. Preparation and properties of nanofiber modified Nafion composite proton exchange membrane[D]. Tianjin: Tiangong University, 2016: 31-42.
[10] MATSUMOTO K, HIGASHIHARA T, UEDA M. Locally and densely sulfonated poly(ether sulfone)s as proton exchange membrane[J]. Macromolecules, 2009,42(4):1161-1166.
doi: 10.1021/ma802637w
[11] SHABANI I, HASANI-SADRABADI M M, HADDADI-ASL V, et al. Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications[J]. Journal of Membrane Science, 2011,368(1/2):233-240.
doi: 10.1016/j.memsci.2010.11.048
[12] 王哲, 倪宏哲, 范猛, 等. 磺化聚醚砜质子交换膜材料的合成与性能[J]. 高分子材料科学与工程, 2007,23(3):238-242.
WANG Zhe, NI Hongzhe, FAN Meng, et al. Synjournal and properties of sulfonated polyethersulfone proton exchange membrane materials[J]. Polymer Materials Science & Engineering, 2007,23(3):238-242.
[13] MUTHUMEENAL A, NEELAKANDAN S, RANA D, et al. Sulfonated polyethersulfone (SPES)-charged surface modifying macromolecules (cSMMs) blends as a cation selective membrane for fuel cells[J]. Fuel Cells, 2014,14(6):853-861.
doi: 10.1002/fuce.201400044
[14] KUMAR P S, JAYARAMAN S, SINGH G. Rheology and processing of polymer nanocomposites[M]. New Jersey: John Wiley & Sons Inc., 2016: 329-354.
[15] 程博闻, 高鲁, SARMAD Bushra, 等. 静电纺树枝状聚乳酸纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018,39(12):145-150.
CHENG Bowen, GAO Lu, SARMAD Bushra, et al. Fabrication of polylactic acid tree-like nanofiber membrane and its application in filtration[J]. Journal of Textile Research, 2018,39(12):145-150.
[16] WANG L, ZHU J, ZHENG J, et al. Nanofiber mats electrospun from composite proton exchange membranes prepared from poly(aryl ether sulfone)s with pendant sulfonated aliphatic side chains[J]. RSC Advances, 2014,4(48):25195-25200.
doi: 10.1039/c4ra02286f
[17] XIANG Z, ZHAO X, GE J, et al. Effect of sulfonation degree on performance of proton exchange membranes for direct methanol fuel cells[J]. Chemical Research in Chinese Universities, 2016,32(2):291-295.
doi: 10.1007/s40242-016-5344-y
[1] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[2] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[3] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[4] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[5] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan / polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[6] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride / FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[7] SUN Qian, KAN Yan, LI Xiaoqiang, GAO Dekang. Preparation and performance of colorimetric humidity sensor using polyacrylonitrile/CoCl2 nanofibers [J]. Journal of Textile Research, 2020, 41(11): 27-33.
[8] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[9] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[10] DUAN Fangyan, WANG Wenyu, JIN Xin, NIU Jiarong, LIN Tong, ZHU Zhengtao. Research progress in formation of starch fibers and their drug-loaded controlled-release [J]. Journal of Textile Research, 2020, 41(10): 170-177.
[11] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[12] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[13] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[14] FANG Zhou, SONG Leilei, SUN Baojin, LI Wenxiao, ZHANG Chao, YAN Jun, CHEN Lei. Research progress in structure design of carbon nanofibers and their adsorption mechanism and applications toward sewage pollutants [J]. Journal of Textile Research, 2020, 41(08): 135-144.
[15] DUAN Hongmei, WANG Ximing, HUANG Zixin, GAO Jing, WANG Lu. Construction and drug release properties of fiber-based mesoporous SiO2 drug carrier [J]. Journal of Textile Research, 2020, 41(07): 15-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!