Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 168-173.doi: 10.13475/j.fzxb.20191206306
• Comprehensive Review • Previous Articles Next Articles
LI Haoyi1,2, XU Hao1, CHEN Mingjun1, YANG Tao3, CHEN Xiaoqing1, YAN Hua1,2, YANG Weimin1,2()
CLC Number:
[1] | 丁雷. 声频工程中共振吸声材料特性及应用[J]. 电声技术, 2019(5):12-18. |
DING Lei. Characteristics and application of resonant sound absorbing materials in audio engineering[J]. Audio Engineering, 2019(5):12-18. | |
[2] | CHANG G, ZHU X, LI A, et al. Formation and self-assembly of 3D nanofibrous networks based on oppositely charged jets[J]. Materials & Design, 2016,97:126-130. |
[3] |
RAHIMABADY M, STATHARAS E C, YAO K, et al. Hybrid local piezoelectric and conductive functions for high performance airborne sound absorption[J]. Applied Physics Letters, 2017,111(24):241601.
doi: 10.1063/1.5010743 |
[4] |
KALINOVÁ K. Nanofibrous resonant membrane for acoustic applications[J]. Journal of Nanomaterials, 2011.DOI: org/10.1155/2011/265720.
doi: 10.1155/2011/469031 pmid: 22448162 |
[5] |
KUCUKALI O M M K, KALINOVA K, NERGIS B, et al. Comparison of resonance frequency of a nanofibrous membrane and a homogeneous membrane structure[J]. Textile Research Journal, 2013,83(20):2204-2210.
doi: 10.1177/0040517513490064 |
[6] | ASMATULU R, KHAN W, YILDIRIM M B. Acoustical properties of electrospun nanofibers for aircraft interior noise reduction [C]//Asme International Mechanical Engineering Congress & Exposition. Florida: The American Society of Mechanical Engineers, 2009: 223-227. |
[7] | 彭敏, 赵晓明. 纤维类吸声材料的研究进展[J]. 材料导报, 2019,33(21):3669-3677. |
PENG Min, ZHAO Xiaoming. Advances in the fiber-based sound-absorbing materials[J]. Materials Reports, 2019,33(21):3669-3677. | |
[8] |
KHAN W S, ASMATULU R, YILDIRIM M B. Acoustical properties of electrospun fibers for aircraft interior noise reduction[J]. Journal of Aerospace Engineering, 2012,25(3):376-382.
doi: 10.1061/(ASCE)AS.1943-5525.0000118 |
[9] |
SELVARAJ S, JEEVAN V, JONNALAGADDA R R, et al. Conversion of tannery solid waste to sound absorbing nanofibrous materials: a road to sustainability[J]. Journal of Cleaner Production, 2019,213:375-383.
doi: 10.1016/j.jclepro.2018.12.144 |
[10] |
KUCUKALI OZTURK M, NERGIS F B, CANDAN C. Design of layered structure with nanofibrous resonant membrane for acoustic applications[J]. Journal of Industrial Textiles, 2018,47(7):1739-1756.
doi: 10.1177/1528083717708483 |
[11] |
XIANG H, TAN S, YU X, et al. Sound absorption behavior of electrospun polyacrylonitrile nanofibrous membranes[J]. Chinese Journal of Polymer Science, 2011,29(6):650-657.
doi: 10.1007/s10118-011-1079-x |
[12] |
BAHRAMBEYGI H, SABETZADEH N, RABBI A, et al. Nanofibers (PU and PAN) and nanoparticles (nanoclay and MWNTs) simultaneous effects on polyurethane foam sound absorption[J]. Journal of Polymer Research, 2013,20(2):72.
doi: 10.1007/s10965-012-0072-6 |
[13] | RABBI A, BAHRAMBEYGI H, NASOURI K, et al. Manufacturing of PAN or PU nanofiber layers/PET nonwoven composite as highly effective sound absorbers[J]. Advances in Polymer Technology, 2014,33(4):21425. |
[14] |
KUCUKALI O M, NERGIS F B, CANDAN C. Design of electrospun polyacrylonitrile nanofiber-coated nonwoven structure for sound absorption[J]. Polymers for Advanced Technologies, 2018,29(4):1255-1260.
doi: 10.1002/pat.v29.4 |
[15] | ZKAL A, CENGIZ Ç F, AKDUMAN Ç. Development of a new nanofibrous composite material from recycled nonwovens to improve sound absorption ability[J]. Journal of The Textile Institute Proceedings and Abstracts, 2020,111(2):189-201. |
[16] |
WU C M, CHOU M H. Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes[J]. Composites Science and Technology, 2016,127:127-133
doi: 10.1016/j.compscitech.2016.03.001 |
[17] |
JI G, CUI J, FANG Y, et al. Nano-fibrous composite sound absorbers inspired by owl feather surfaces[J]. Applied Acoustics, 2019,156:151-157.
doi: 10.1016/j.apacoust.2019.06.021 |
[18] |
NA Y, AGNHAGE T, CHO G. Sound absorption of multiple layers of nanofiber webs and the comparison of measuring methods for sound absorption co-efficients[J]. Fibers and Polymers, 2012,13(10):1348-1352.
doi: 10.1007/s12221-012-1348-5 |
[19] |
CHEN F Q, WU Y H, DING Z Y, et al. A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing[J]. Nano Energy, 2019,56:241-251.
doi: 10.1016/j.nanoen.2018.11.041 |
[20] | 浦文婧, 李效东, 王清华. 高分子吸声材料吸声性能与粘弹性之间的关系[J]. 高分子材料科学与工程, 2011,27(12):86-89. |
PU Wenjing, LI Xiaodong, WANG Qinghua. Relationship between acoustical absorptivity and viscoelasticity of acoustical absorptive polymer[J]. Polymer Materials Science & Engineering, 2011,27(12):86-89. | |
[21] |
ZKAL A, CENGIZ ÇALLIO LU F. Effect of nanofiber spinning duration on the sound absorption capacity of nonwovens produced from recycled polyethylene terephthalate fibers[J]. Applied Acoustics, 2020,169:107468.
doi: 10.1016/j.apacoust.2020.107468 |
[22] |
KUCUKALI O M, OZDEN Y E, NERGIS B, et al. Nanofiber-enhanced lightweight composite textiles for acoustic applications[J]. Journal of Industrial Textiles, 2017,46(7):1498-1510.
doi: 10.1177/1528083715622427 |
[23] |
AVOSSA J, BRANDA F, MARULO F, et al. Light electrospun polyvinylpyrrolidone blanket for low frequencies sound absorption[J]. Chinese Journal of Polymer Science, 2018,36(12):1368-1374.
doi: 10.1007/s10118-018-2154-3 |
[24] |
CAO L, SI Y, YIN X, et al. Ultralight and resilient electrospun fiber sponge with a lamellar corrugated microstructure for effective low-frequency sound absorption[J]. ACS Applied Materials & Interfaces, 2019,11(38):35333-35342.
doi: 10.1021/acsami.9b12444 pmid: 31487451 |
[25] | IANNACE G. Acoustic properties of nanofibers[J]. Noise & Vibration Worldwide, 2014,45(10):29-33. |
[26] | LIU H, WANG D, ZHAO N, et al. Application of electrospinning fibres on sound absorption in low and medium frequency range[J]. Materials Research Innovations, 2014,18(sup4):888-891. |
[27] | 杨卫民, 李好义, 吴卫逢, 等. 熔体静电纺丝技术研究进展[J]. 北京化工大学学报 (自然科学版), 2014,41(4):1-13. |
YANG Weimin, LI Haoyi, WU Weifeng, et al. Recent advances in melt electrospinning[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2014,41(4):1-13. | |
[28] | 陈明军, 张有忱, 李好义, 等. 熔体微分静电纺丝纳米纤维高效绿色制备技术[J]. 北京化工大学学报 (自然科学版), 2018,45(5):119-128. |
CHEN Mingjun, ZHANG Youchen, LI Haoyi, et al. Nanofiber preparation technology by melt differential electrospinning with high efficiency in the absence of a solvent[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2018,45(5):119-128. | |
[29] | 栾巧丽, 邱华, 成钢, 等. 羊毛及其混合纤维非织造材料的吸声性能[J]. 纺织学报, 2017,38(3):67-71. |
LUAN Qiaoli, QIU Hua, CHENG Gang, et al. Sound absorption properties of nonwoven material based on wool and its hybrid fibers[J]. Journal of Textile Research, 2017,38(3):67-71. | |
[30] | 杜兆芳, 胡凤霞, 赵淼淼, 等. 汽车内饰材料的吸声性能[J]. 纺织学报, 2011,32(6):45-49. |
DU Zhaofang, HU Fengxia, ZHAO Miaomiao, et al. Sound absorption properties of automotive ornamental materials[J]. Journal of Textile Research, 2011,32(6):45-49. | |
[31] | 邹亚玲, 石琳, 周颖, 等. 纳米纤维毡复合材料制备及其吸声性能研究[J]. 产业用纺织品, 2014 (9):22-26. |
ZOU Yaling, SHI Lin, ZHOU Ying, et al. Preparation of sound absorption on nano-fiber composite mats and its sound absorption property[J]. Technical Textiles, 2014 (9):22-26. | |
[32] |
LOU C W, LIN J H, SU K H. Recycling polyester and polypropylene nonwoven selvages to produce functional sound absorption composites[J]. Textile Research Journal, 2005,75(5):390-394.
doi: 10.1177/0040517505054178 |
[33] | ARENAS J P, CROCKER M J. Recent trends in porous sound-absorbing materials[J]. Sound & Vibration, 2010,44(7):12-18. |
[1] | CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174. |
[2] | WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29. |
[3] | YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45. |
[4] | SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77. |
[5] | LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189. |
[6] | ZHOU Qihong, SUN Baotong, CEN Junhao, ZHAN Qichen. Measurement method of winding density of cheese package based on laser scanning and modeling [J]. Journal of Textile Research, 2021, 42(01): 96-102. |
[7] | YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9. |
[8] | WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan / polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36. |
[9] | ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride / FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20. |
[10] | SUN Qian, KAN Yan, LI Xiaoqiang, GAO Dekang. Preparation and performance of colorimetric humidity sensor using polyacrylonitrile/CoCl2 nanofibers [J]. Journal of Textile Research, 2020, 41(11): 27-33. |
[11] | WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26. |
[12] | WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18. |
[13] | SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis on acoustic absorption performance of activated carbon fiber felts with gradient structure [J]. Journal of Textile Research, 2020, 41(10): 29-33. |
[14] | DUAN Fangyan, WANG Wenyu, JIN Xin, NIU Jiarong, LIN Tong, ZHU Zhengtao. Research progress in formation of starch fibers and their drug-loaded controlled-release [J]. Journal of Textile Research, 2020, 41(10): 170-177. |
[15] | PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173. |
|