Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (12): 151-156.doi: 10.13475/j.fzxb.20200306706

• Machinery & Accessories • Previous Articles     Next Articles

Effect of nickel-phosphorus-nano-SiC-polytetrafluoroethylene electroless composite plating on lifetime of traveller for yarn spinning

MA Shasha1, WANG Junbo1(), LUO Qian1, SI Fang1, YANG Min'ge1, CHEN Ningbo2, ZHANG Xiaofeng2, LI Bo1   

  1. 1. Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xianyang Xinhe Textile Machinery Equipment Co., Ltd., Xianyang, Shaanxi 712000, China
  • Received:2020-03-25 Revised:2020-06-29 Online:2020-12-15 Published:2020-12-23
  • Contact: WANG Junbo E-mail:wangjunbo@xpu.edu.cn

Abstract:

In order to study and analyze the influence of different surface treatment processes on the performance of the traveler for yarn spinning and further improve the service life of the traveler, electroless plating was employed using a plating solution fabricated from nickel-phosphorus-nano-SiC-polytetrafluoroethylene (Ni-P-SiC-PTFE) to coat the traveller. The microstructure and performance of the traveler and the coating were characterized using scanning electron microscope, X-ray energy spectrometer and experimented on the ring spinning machine. The results show that compared to the Ni-P chemically coated traveler, the grains of Ni-P-SiC-PTFE chemical composite plated travellers are refined and uniform in thickness, and the coating is well attached to the substrate. It is found that the thickness of the coating is doubled, and the hardness of the coating is increased by 24.5%. After trial spinning using Ni-P-SiC-PTFE chemical composite plated travellers, yarn faults such as the yarn thin section, thick spots and neps are reduced by 40%, 18.8% and 10.3% respectively, and the breakage rate caused by the hanging of the traveler is reduced by 50%, and the wear of the traveler is reduced by 31.6%, demonstrating superiority over the Ni-P electroless traveller.

Key words: nano-SiC, electroless composite plating, nickel-phosphorus-SiC-polytetrafluoroethylene, rate of hairiness, abrasion resistance, traveller

CLC Number: 

  • TS112.8

Fig.1

Surface images of coatings(×2 000). (a) Ni-P-SiC-PTFE electroless composite plating; (b)Ni-P electroless plating"

Fig.2

Surface morphology of Ni-P-SiC-PTFE electroless composite plating after corrosion(×2 000)"

Fig.3

EDS diagrams of Ni-P-SiC-PTFE electroless composite plating in point A(a) and point B(b)"

Tab.1

Element and content of points A and B on surface of Ni-P-SiC-PTFE electroless composite plating%"

元素 A B
质量百分比 原子百分比 质量百分比 原子百分比
C 0.88 76.60 0.82 56.96
Si 0.58 21.70 0.00 0.00
Ni 0.10 1.70 2.54 35.94
P 0.00 0.00 0.26 7.09

Fig.4

Scanned image of Ni-P-SiC-PTFE electroless composite plating. (a) Fluorine element longitudinal section; (b) Silicon element longitudinal section; (c) Fluorine element cross section; (d) Silicon element cross section"

Fig.5

Cross-section morphology of coatings(×5 000). (a) Ni-P-SiC-PTFE electroless composite plating; (b) Ni-P electrless plating"

Tab.2

Hardness of base and coating of traveller after different surface treatments"

表面处理
次数
Ni-P-SiC-PTFE
化学复合镀/GPa
Ni-P化学镀/GPa
基体硬度 镀层硬度 基体硬度 镀层硬度
1 6.37 6.84 6.40 5.50
2 6.23 6.60 6.44 5.34
3 6.55 6.51 6.21 5.41
4 6.34 6.71 6.35 5.32
5 6.46 6.76 6.38 5.26
平均硬度 6.39 6.68 6.36 5.37

Tab.3

Yarn hairiness index of travellers with different surface treatments"

试样 编号 质量变异
系数/%
-50%细节/
(个·km-1)
+50%粗节/
(个·km-1)
+200%棉结/
(个·km-1)
毛羽值 毛羽值
标准差
Ni-P-SiC-PTFE
化学复合镀
1 12.81 2 8 25 3.90 0.78
2 13.01 0 3 16 3.69 0.79
3 12.57 0 5 21 3.65 0.76
4 13.11 1 10 25 3.62 0.80
均值 12.88 0.75 6.5 21.75 3.72 0.78
Ni-P化学镀 1 13.52 1 10 22 3.87 0.81
2 13.30 3 6 27 3.83 0.80
3 12.77 0 8 28 3.68 0.77
4 13.86 1 8 20 3.87 0.77
均值 13.36 1.25 8 24.25 3.81 0.79

Tab.4

Breakage ratio of different surface treated travellers after trial spinning"

表面处理 千锭时
断头根数
落纱后
断头根数
断头占比/%
钢丝圈
挂花
一般
断头
Ni-P化学镀 20 51 10 90
Ni-P-Si-PTFE
化学复合镀
16 48 5 95

Fig.6

Morphology of electroless composite plated traveler after abrasion(×2 000). (a) Ni-P-SiC-PTFE electroless composite plating; (b) Ni-P electroless plating"

Fig.7

Wear mechanism model of electroless composite plated traveler. (a) Unspun period; (b) Early spinning"

[1] 王可平. 国产耐磨钢领钢丝圈的研发与应用[J]. 棉纺织技术, 2017,45(1):59-61.
WANG Keping. Development and application of domestic wear-resistant steel ring travelers[J]. Cotton Textile Technology, 2017,45(1):59-61.
[2] 刘新佳, 王海彦, 赵永武. 纺纱钢丝圈的早期磨损失效分析[J]. 金属热处理, 2006(4):84-86.
LIU Xinjia, WANG Haiyan, ZHAO Yongwu. Early wear failure analysis of spinning travellers[J]. Heat Treatment of Metals, 2006(4):84-86.
[3] 李思颖, 徐伯俊, 刘新金. 钢丝圈空间倾角分析[J]. 纺织学报, 2015,36(8):127-132,143.
LI Siying, XU Bojun, LIU Xinjin. Analysis of space angle of traveller[J]. Journal of Textile Research, 2015,36(8):127-132, 143.
[4] 黄晓梅, 金少兵. 镀液中SiC的质量浓度对化学镀Ni-P-SiC 复合镀层性能的影响[J]. 电镀与环保, 2019,39(1):48-52.
HUANG Xiaomei, JIN Shaobing. Effect of the mass concentration of SiC in the plating solution on the performance of electroless Ni-P-SiC composite coatings[J]. Electroplating & Environmental Protection, 2019,39(1):48-52.
[5] 蔡旭林, 孟为国, 肖茂华. 化学复合镀Ni-P/C纤维工艺及性能研究[J]. 热加工工艺, 2019,48(10):127-131,135.
CAI Xulin, MENG Weiguo, XIAO Maohua. Study on process and properties of electroless. composite Ni-P/C fiber plating[J]. Hot Working Technology, 2019,48(10):127-131,135.
[6] 杜春平. Ni-P-SiC-MoS2化学复合镀层的组织结构及耐磨性能[J]. 材料保护, 2013,46(2):48-50,68.
DU Chunping. Microstructure and wear resistance of Ni-P-SiC-MoS2 electroless composite coating[J]. Material Protection, 2013,46(2):48-50,68.
[7] 黄燕滨, 王期超, 巴国召, 等. 表面活性剂对化学复合镀镍-磷-石墨烯镀层性能的影响[J]. 电镀与涂饰, 2016,35(23):1219-1222.
HUANG Yanbin, WANG Qichao, BA Guozhao, et al. Effects of surfactants on the performance of electroless nickel-phosphorus-graphene composite plating[J]. Electroplating and Finishing, 2016,35(23):1219-1222.
[8] 陈小文, 谢华, 李晖. 化学复合镀Ni-P-纳米SiC-PTFE工艺的研究[J]. 电镀与环保, 2010,30(3):22-26.
CHEN Xiaowen, XIE Hua, LI Hui. Study on the process of chemical composite Ni-P-nano-SiC-PTFE plating[J]. Electroplating & Environmental Protection, 2010,30(3):22-26.
[9] 杨玉明, 李伟, 刘平, 等. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020,34(4):4153-4157.
YANG Yuming, LI Wei, LIU Ping, et al. Microstructure and mechanical properties of silicon carbide doped Ni-P-PTFE composite coating[J]. Materials Reports, 2020,34(4):4153-4157.
[10] 李富军, 叶涛, 方舒, 等. pH对化学复合镀镍-磷-聚四氟乙烯性能的影响[J]. 电镀与涂饰, 2019,38(5):208-211.
LI Fujun, YE Tao, FANG Shu, et al. The effect of pH on the performance of electroless nickel-phosphorus polytetrafluoroethylene plating[J]. Electroplating and Finishing, 2019,38(5):208-211.
[11] 曾宪光, 李明田, 刘春海, 等. (Ni-P)-PTFE化学复合镀工艺优化及性能研究[J]. 电镀与精饰, 2015,37(4):6-9.
ZENG Xianguang, LI Mingtian, LIU Chunhai, et al. Optimization and performance study of (Ni-P)-PTFE chemical composite plating process[J]. Electroplating and Finishing, 2015,37(4):6-9.
[12] 王花会, 孟家光. 纱线毛羽性能测试分析[J]. 纺织科技进展, 2007(3):74-75,78.
WANG Huahui, MENG Jiaguang. Analysis of yarn hairiness performance[J]. Progress in Textile Science & Technology, 2007 (3):74-75,78.
[1] ZHANG Qian, MAO Jifu, LÜ Luyao, XU Zhongmian, WANG Lu. Abrasion resistance of suture at anchor eyelet for tendon-bone repair and its influencing factors [J]. Journal of Textile Research, 2020, 41(12): 66-72.
[2] WU Shufang, ZHANG Tingting, HASAN Md Rokibul, CHEN Yiren. Improvement of friction performance of polyester interlacement yarn linen-like fabric [J]. Journal of Textile Research, 2019, 40(10): 134-140.
[3] . Influence of sizing agent on surface and weaving performance of SiC fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 78-84.
[4] . Size-free sizing process for cellulosic yarns [J]. Journal of Textile Research, 2016, 37(2): 85-91.
[5] . Analysis on yarn tension properties of balloon bottom of BC9 ring [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(08): 119-124.
[6] . Research on dip angle of traveller on ring spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 127-132.
[7] . Evaluation on fabric singeing effect based on change of fabric hairiness characteristics [J]. Journal of Textile Research, 2015, 36(04): 102-106.
[8] LING Ming-Hua, ZHANG Hui. Electroless Ag-TiO2 (nanometer) composite coating on PET fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(12): 103-107.
[9] SUN Hong-wen;CHEN Qing-guan . Cohesion testing method and equipment of raw silk [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 80-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!