Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (12): 73-80.doi: 10.13475/j.fzxb.20200402708

• Textile Engineering • Previous Articles     Next Articles

Bending property and damage mechanism of three-dimensional woven angle interlock SiCf/SiC composites

YANG Tiantian1, WANG Ling2, QIU Haipeng2, WANG Xiaomeng2, ZHANG Diantang1(), QIAN Kun1   

  1. 1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Aerospace Composites Technology Center, Beijing 101300, China
  • Received:2020-04-10 Revised:2020-07-08 Online:2020-12-15 Published:2020-12-23
  • Contact: ZHANG Diantang E-mail:zhangdiantang@jiangnan.edu.cn

Abstract:

Targeting at the bending failure of ceramic matrix composites in service environment, the interaction mechanism between the bending stress of the composite material and the internal fibers during warp and weft bending was theoretically analyzed. Taking SiCf/SiC composite materials as an example, three-dimensional (3-D) images of internal fiber structure and pores were obtained using micro computed tomography. On this basis, the warp and weft directions of the three-dimensional woven angle interlock SiCf/SiC composite were tested respectively, and the bending damage mechanism was analyzed in the meso and micro scales. The results show that weft and warp performance of SiCf/SiC composite are significantly different, and the bending strength of the weft specimen is larger than that of the warp specimen. The bending damage modes of 3-D woven angle interlock SiCf/SiC composites are complex, in which the warp cracks mainly propagate at the warp and weft contact points, while the cracks of weft specimen mainly occur between the weft bundles, eventually leading to bending failure.

Key words: three-dimensional woven angle interlock fabric, SiCf/SiC composite, polymer Infiltration and pyrolysis, three-point bending test, damage mechanism

CLC Number: 

  • TB332

Fig.1

Three-dimensional woven angle interlock SiC fiber prefabricated component morphology. (a)SiC fiber prefabricated component(micro-CT);(b)SiC fiber prefabricated component;(c)Warp cross-section morphology; (d) Weft cross-section morphology"

Fig.2

Three-dimensional woven angle interlocking SiCf/SiC composite morphology. (a)SiCf/SiC composite; (b)Pores of SiCf/SiC composite"

Fig.3

Three-dimensional woven angle interlock SiCf/SiC composite test piece. (a)Warp direction(X-direction)specimen;(b)Weft direction(Y-direction)specimen; (c)Length of specimen;(d)Width of specimen"

Fig.4

Three-point bending test of three-dimensional woven angle interlocking SiCf/SiC composite"

Fig.5

Bending strength-displacement curves of warp (a) and weft (b) direction three-dimensional woven angle interlock SiCf/SiC ceramic matrix composites"

Tab.1

Bending mechanical properties of three-dimensional woven angle interlock SiCf/SiC composites"

试样
名称
弯曲强
度/MPa
弯曲模
量/GPa
平均弯曲
强度/MPa
平均弯曲
模量/GPa
经向-1 327.57 52.17 299.33 51.52
经向-2 268.79 48.74
经向-3 301.63 48.65
纬向-1 367.12 47.65 394.56 45.87
纬向-2 401.74 42.15
纬向-3 414.82 47.81
标准偏差 346.95±52.52 47.86±2.96

Fig.6

Bending force diagram of warp (a) and weft (b) direction of SiCf/SiC composite"

Fig.7

Damage diagram of warp SiCf/SiC composite under superfield microscope. (a)Fiber breakage and matrix crack;(b)Fiber break"

Fig.8

Damage diagram of weft SiCf/SiC composite under superfield microscope. (a)Fiber fracture and matrix crack;(b)Matrix crack"

Fig.9

Damage SEM images of warp SiCf/SiC composite under different magnification"

Fig.10

Damage SEM images of weft SiCf/SiC composite under different magnification"

[1] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007,24(2):1-6.
ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007,24(2):1-6.
[2] KATOH Y, SNEAD L L, HENAGER C H, et al. Current status and recent research achievements in SiC/SiC composites[J]. Journal of Nuclear Materials, 2014,455(1-3):387-397.
[3] 邱海鹏, 陈明伟, 谢巍杰. SiC/SiC 陶瓷基复合材料研究及应用[J]. 航空制造技术, 2015,14:94-97.
QIU Haipeng, CHEN Mingwei, XIE Weijie. Research and application of SiC/SiC ceramic matrix composites[J]. Aeronautical Manufacturing Technology, 2015,14:94-97.
[4] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019,47(2):1-10.
LIU Qiaomu, HUANG Shunzhou, HE Aijie. Application requirements and challenges of silicon carbide ceramic matrix composites on aeroengines[J]. Journal of Materials Engineering, 2019,47(2):1-10.
[5] KUMAR S, BABLU M, JANGHELA S, et al. Factorial design, processing, characterization and microstructure analysis of PIP-based C/SiC composites[J]. Bulletin of Materials Science, 2018,41(1):17.
doi: 10.1007/s12034-017-1535-5
[6] 蒋丽娟, 侯振华, 周寅智. 三维预制体结构及界面对SiC/SiC复合材料拉伸性能的影响[J]. 复合材料学报, 2020,37(3):642-649.
JIANG Lijuan, HOU Zhenhua, ZHOU Yinzhi. The effect of three-dimensional preform structure and interface on the tensile properties of SiC/SiC compo-sites[J]. Acta Materiae Compositae Sinica, 2020,37(3):642-649.
[7] 谢巍杰, 陈明伟. SiC/SiC复合材料高温力学性能研究[J]. 人工晶体学报, 2016,45(6):1534-1538.
XIE Weijie, CHEN Mingwei. Study on high temperature mechanical properties of SiC/SiC composites[J]. Journal of Synthetic Crystals, 2016,45(6):1534-1538.
[8] 谢巍杰, 陈明伟, 邱海鹏, 等. SiC/SiC复合材料高温面内剪切强度测试方法研究[J]. 陶瓷学报, 2018(1):64-68.
XIE Weijie, CHEN Mingwei, QIU Haipeng, et al. Study on the test method of high temperature in-plane shear strength of SiC/SiC composites[J]. Journal of Ceramics, 2018(1):64-68.
[9] 陈明明, 陈秀华, 张大旭, 等. 平纹叠层SiC/SiC复合材料室温和高温拉伸行为与破坏机理[J]. 上海交通大学学报, 2019,53(1):15-22.
CHEN Mingming, CHEN Xiuhua, ZHANG Daxu, et al. Tensile behavior and failure mechanism of plain SiC/SiC composites at room temperature and high tempe-rature[J]. Journal of Shanghai Jiaotong University, 2019,53(1):15-22.
[10] LUO Z, CAO H, REN H, et al. Tension-tension fatigue behavior of a PIP SiC/SiC composite at elevated temperature in air[J]. Ceramics International, 2016,42(2):3250-3260.
doi: 10.1016/j.ceramint.2015.10.116
[11] LUO Z, ZHOU X G, YU J S, et al. Mechanical properties of SiC/SiC composites fabricated by PIP process with a new precursor polymer[J]. Ceramics International, 2014,40(1):1939-1944.
doi: 10.1016/j.ceramint.2013.07.102
[12] IKARASHI Y, OGASAWARA T, AOKI T. Effects of cyclic tensile loading on the rupture behavior of orthogonal 3D woven SiC/SiC matrix composites at elevated temperatures in air[J]. Journal of the European Ceramic Society, 2019,39(4):806-812.
[13] 胡晓安, 张宇, 阳海棠, 等. 三维编织SiC/SiC复合材料拉伸和弯曲损伤机制[J]. 复合材料学报, 2019,36(8):1879-1885.
HU Xiaoan, ZHANG Yu, YANG Haitang, et al. The tensile and bending damage mechanism of three dimensional braided SiC/SiC composites[J]. Journal of Composite Materials, 2019,36(8):1879-1885.
[14] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018,32(16):2715-2718.
ZHAO Shuang, YANG Zichun, ZHOU Xingui. Structure and properties of two-dimensional semi- and three dimensional textured SiC/SiC composites prepared by precursor impregnation and pyrolysis combined with chemical vapor infiltration[J]. Materials Reports, 2018,32(16):2715-2718.
[15] WHITLOW T, JONES E, PRZYBYLA C. In-situ damage monitoring of a SiC/SiC ceramic matrix composite using acoustic emission and digital image correlation[J]. Composite Structures, 2016,158:245-251.
doi: 10.1016/j.compstruct.2016.09.040
[16] BUNSELL A R, PIANT A. A review of the development of three generations of small diameter silicon carbide fibres[J]. Journal of Materials Science, 2006,41(3):823-839.
doi: 10.1007/s10853-006-6566-z
[17] LIU Y, ZHU J, CHEN Z, et al. Mechanical behavior of 2.5D(shallow straight-joint)and 3D four-directional braided SiO2f/SiO2 composites[J]. Ceramics International, 2012,38(5):4245-4251.
doi: 10.1016/j.ceramint.2012.01.083
[18] LI L B. Modeling the monotonic and cyclic tensile stress-strain behavior of 2D and 2.5D woven C/SiC ceramic-matrix composites[J]. Mechanics of Composite Materials, 2018,54(2):165-178.
[19] MA J, XU Y, ZHANG L, et al. Microstructure characterization and tensile behavior of 2.5D C/SiC composites fabricated by chemical vapor infiltration[J]. Scripta Materialia, 2006,54(11):1967-1971.
doi: 10.1016/j.scriptamat.2006.01.047
[20] YOSHIMA K, HINO T, HIROHATA Y, et al. Crack propagation analysis of SiCf/SiC composites by gas permeability measurement[J]. Journal of the European Ceramic Society, 2011,31(6):1141-1144.
doi: 10.1016/j.jeurceramsoc.2010.12.028
[21] 成来飞, 张立同, 梅辉. 陶瓷基复合材料强韧化与应用基础[M]. 北京: 化学工业出版社, 2018: 184.
CHENG Laifei, ZHANG Litong, MEI Hui. Strengthening and application basis of ceramic matrix composites[M]. Beijing: Chemical Industry Press, 2018: 184.
[22] 高雄, 胡侨乐, 马颜雪, 等. 不同结构厚截面三维机织碳纤维复合材料的弯曲性能对比[J]. 纺织学报, 2017,38(9):66-71.
GAO Xiong, HU Qiaole, MA Yanxue, et al. Bending properties comparison of thick-section carbon fiber composites based on different three-dimensional woven structures[J]. Journal of Textiles Research, 2017,38(9):66-71.
[1] WANG Xu;YAN Xiong. Acoustic emission features on damage behaviors of PE self-reinforced composites [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(3): 27-31.
[2] RONG Qi;QIU Yiping. Bending fatigue behavior of 3-D woven composites [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(10): 42-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!