Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (12): 137-143.doi: 10.13475/j.fzxb.20200300607

• Machinery & Accessories • Previous Articles     Next Articles

Fast location of yarn-bars on yarn-cage based on machine vision

ZHANG Wenchang1,2, SHAN Zhongde1(), LU Ying2   

  1. 1. State Key Laboratory of Advanced Forming Technology and Equipment, China Academy of Machinery Science and Technology Group Co., Ltd., Beijing 100083, China
    2. Beijing National Innovation Institute of Lightweight Ltd., Beijing 100083, China
  • Received:2020-03-03 Revised:2020-05-15 Online:2020-12-15 Published:2020-12-23
  • Contact: SHAN Zhongde E-mail:shanzd@cam.com.cn

Abstract:

In order to realize automatic, digital and intelligent production in textile dyeing industry, a vision based locating method was proposed for an eye-in-hand system aiming at the problem of location of dense yarn-bars on yarn-cage, combing the offline with online detection information. The offline detection unit recognized and located all the yarn-bars on yarn-cage during the machine idle time, and the location information of the yarn-bars was sent to the database. The online detection unit calculated the positions of all the yarn-bars on the yarn-cage, and guided the robot picking or putting objects on the yarn-bars in the productive time. For the online detection a few yarn-bars were detected firstly, and then a least square method were used to calculate the rotation angle and translation vector of the yarn-cage between its online position and offline position. All the positions of yarn-bars on yarn-cage were calculated using the data from the database. Experiment results show that the proposed method offers accuracy, robustness and practicality.

Key words: monocular vision, robot, yarn-cage, yarn-bar, least square method, offline detection, online detection

CLC Number: 

  • TS190.4

Fig.1

Vision robot of yarn-bars on yarn-cage. (a) General design structure; (b) Local structure"

Fig.2

Imaging model"

Fig.3

Yarn-bar recognition"

Fig.4

Manual selection of yarn-bar"

Fig.5

Offline detection flow"

Fig.6

Online detection view"

Fig.7

Online detection flow"

Fig.8

Structure of 120 yarn-bars"

Fig.9

Offline detection photo"

Fig.10

Contrasting figures of offline detection. (a) Picture for error detection and correction; (b) Picture after correction"

Tab.1

Online detection data"

检测
杆号
数据库离线数据 在线检测结果
x y x y
1 1 764.25 911.10 1 771.43 910.95
13 825.60 1 081.24 832.95 1 080.92
77 499.43 1 958.34 507.62 1 958.27
120 1 103.05 2 696.04 1 112.03 2 695.90
108 2 049.63 2 558.20 2 057.70 2 557.63
44 2 376.87 1 661.00 2 384.67 1 660.22

Tab.2

Error of online detection"

杆号 误差 杆号 误差 杆号 误差 杆号 误差 杆号 误差
1 0.44 25 0.47 49 0.28 73 0.16 97 0.38
2 0.43 26 0.13 50 0.53 74 0.57 98 0.56
3 0.12 27 0.57 51 0.53 75 0.56 99 0.28
4 0.26 28 0.19 52 0.54 76 0.55 100 0.34
5 0.45 29 0.44 53 0.45 77 0.31 101 0.24
6 0.44 30 0.41 54 0.54 78 0.69 102 0.48
7 0.50 31 0.49 55 0.26 79 0.17 103 0.33
8 0.38 32 0.47 56 0.65 80 0.64 104 0.43
9 0.05 33 0.14 57 0.30 81 0.57 105 0.39
10 0.34 34 0.38 58 0.51 82 0.45 106 0.47
11 0.48 35 0.60 59 0.41 83 0.31 107 0.35
12 0.55 36 0.41 60 0.53 84 0.52 108 0.29
13 0.36 37 0.07 61 0.44 85 0.43 109 0.40
14 0.25 38 0.48 62 0.26 86 0.60 110 0.42
15 0.57 39 0.24 63 0.49 87 0.27 111 0.32
16 0.17 40 0.25 64 0.45 88 0.08 112 0.45
17 0.06 41 0.38 65 0.32 89 0.58 113 0.53
18 0.36 42 0.21 66 0.75 90 0.61 114 0.70
19 0.42 43 0.41 67 0.36 91 0.45 115 0.12
20 0.65 44 0.08 68 0.19 92 0.44 116 0.17
21 0.60 45 0.59 69 0.20 93 0.70 117 0.17
22 0.29 46 0.43 70 0.41 94 0.42 118 0.40
23 0.43 47 0.15 71 0.48 95 0.70 119 0.36
24 0.19 48 0.49 72 0.35 96 0.26 120 0.56

Tab.3

Online positioning detection data of yarn-bars with few count"

检测杆号 在线检测计算结果 120杆误差
θ/rad Tx/mm Ty/mm 平均值 最大值
1, 13 0.000 14 7.40 -0.41 1.01 1.95
1, 77 -0.000 43 7.07 0.38 0.45 0.91
1, 120 -0.000 89 6.48 1.13 0.47 0.97
13, 77, 120 -0.000 90 6.45 0.56 0.52 1.08
13, 77, 108 -0.000 40 7.13 0.13 0.43 0.96
13, 108, 44 -0.000 37 7.10 0.08 0.47 1.06
77, 120, 108,44 -0.000 48 7.19 0.34 0.40 0.87
1, 77, 120, 108 -0.000 57 6.95 0.54 0.40 0.82
13, 77, 108, 44 -0.000 39 7.15 0.12 0.43 0.82
1, 13, 77, 108, 44 -0.000 42 7.04 0.25 0.45 0.94
1, 13, 120, 108, 44 -0.000 61 6.79 0.60 0.41 0.75
13, 77, 120,108, 44 0.000 53 7.03 0.35 0.39 0.75
[1] 吴双峰, 单忠德, 王德成, 等. 染色工序经轴纱自动装卸夹持器设计[J]. 毛纺科技, 2018,46(5):1-4.
WU Shuangfeng, SHAN Zhongde, WANG Decheng, et al. Design of automatic loading and unloading warp beam holder in dyeing process[J]. Wool Textile Journal, 2019,46(5):1-4.
[2] 蔡逸超, 周晓, 宋明峰, 等. 应用多尺度多方向模板卷积的筒子纱缺陷检测[J]. 纺织学报, 2019,40(4):152-157.
CAI Yichao, ZHOU Xiao, SONG Mingfeng, et al. Defect detection of cheese yarn bsed on multi-scale multi-direction template convolution[J]. Journal of Textile Research, 2019,40(4):152-157.
[3] WANG Weichien, CHEN Liangbi, CHANG Wangjung, et al. A machine vision based automatic optical inspection system for measuring drilling quality of printed circuit boards[J]. IEEE Access, 2017,5:10817-10833.
[4] CHANDRA S N, BIPAN T, CHIRANJIB K. A machine vision-based maturity prediction system for sorting of harvested mangoes[J]. IEEE Transactions on Instrumentation and Measurement, 2014,63(7):1722-1730.
doi: 10.1109/TIM.2014.2299527
[5] ZHANG Wenchang, MEI Jiangping, DING Yabin, et al. Angle recognition algorithm based on discrete series data of object-boundary in polar coordinate[J]. Optik, 2013,124:1273-1277.
doi: 10.1016/j.ijleo.2012.03.025
[6] ZHANG Wenchang, WANG Ronghao, JI Lijuan, et al. High precise position method based on 2 CCD cameras in alternate-angle image acquisition mode[C]// 2018 IEEE International Conference on Mechatronics, Robotics and Automation (ICMRA). Hefei: IEEE, 2018,21(6):946-949.
[7] 朱永国, 张文博, 邓正平, 等. 基于激光跟踪仪和机器视觉的飞机翼身对接装配偏差动态综合修正[J]. 机械工程学报, 2018,55(24):187-196.
ZHU Yongguo, ZHANG Wenbo, DENG Zhengping, et al. Dynamic sysjournal correction of deviation for aircraft wing-fuselage checking assembly based on laser tracker and machine vision[J]. Journal of Mechanical Engineering, 2018,55(24):187-196.
[8] GU Fengwei, GAO Hongwei, LIU Jingguo, et al. Research on static vision-based target localization for astronaut assistant robots[J]. IEEE Access, 2019,7:128394-128407.
[9] KUO Yonglin, LIU Bohan, WU Chunyu, et al. Pose determination of a robot manipulator based on monocular vision[J]. IEEE Access, 2014,4:8454-8464.
[10] FRANK Chen. Robot manipulation of 3D cylindrical objects with a robot-mounted 2D vision camera[C]// 2017 Computing Conference. London: IEEE, 2017: 192-199.
[11] ROMULO G L, SIDNEY N G, PAULO R G K, Vision-based measurement for localization of objects in 3-D for robotic applications[J]. IEEE Transactions on Instrumentation and Measurement, 2016,64(11):2950-2958.
[12] 季旭全, 王君臣, 赵江地, 等. 基于机器人和视觉引导的星载设备智能装配方法[J]. 机械工程学报, 2018,54(23):63-72.
JI Xuquan, WANG Junchen, ZHAO Jiangdi, et al. Intelligent robotic assembly method of spaceborne equipment based on visual guidance[J]. Journal of Mechanical Engineering, 2018,54(23):63-72.
[1] SHEN Jinzhu, ZHAO Xiaolu, ZHANG Fan, YU Qing, SU Junqiang. Design and ergonomic evaluation of flexible rehabilitation gloves [J]. Journal of Textile Research, 2020, 41(09): 119-127.
[2] LI Xun, NAN Kaikai, ZHAO Zhengfan, WANG Xiaohua, JING Junfeng. Task allocation of handling robot in textile workshop based on multi-agent game theory [J]. Journal of Textile Research, 2020, 41(07): 78-87.
[3] LIU Airong, CHEN Yanmin, GE Fengyan, CAI Zaisheng, WANG Juan. Progress on fiber-based surface-enhanced Raman scattering substrates [J]. Journal of Textile Research, 2020, 41(05): 176-183.
[4] ZHOU Hu, LIU Tao, GAO Jinjie, ZHOU Qiang, LUO Binhong, YOU Zheng, SU Bingwang, BA La. Planning of trajectory and optimization of speed control of hand-made tufting machine [J]. Journal of Textile Research, 2019, 40(10): 177-182.
[5] REN Huiying, ZOU Kun, HU Xiaorong. Simulation platform for chemical filament automatic doff system [J]. Journal of Textile Research, 2019, 40(07): 151-157.
[6] . Online detection of roving strand broken in siro-spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 120-0124.
[7] .  Evaluation of stain release rating based on image analysis [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(3): 50-54.
[8] . Structure parameter optimization design of foreign fiber sorting robot based on consideration of flexibility [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(2): 151-156.
[9] HU Zhengyu;YU Haifeng . Fitting and forecasting the silk size curve [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(10): 29-33.
[10] JIANG Haizhen;LI Liangyu;FAN Fanglei;ZHOU Xin. Vision tracking system of 3-D preform stitching robot [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(10): 113-116.
[11] LI Wei;ZHU Xin-jian;WEI Peng-xiao. Fuzzy control of the leveling control system based on the least square method [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 37-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!