Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (01): 59-66.doi: 10.13475/j.fzxb.20200504408

• Textile Engineering • Previous Articles     Next Articles

Effect of wrapping and twisting on mechanical properties of air-jet vortex spun yarns

CHEN Meiyu1,2(), LIU Yulin3, HU Geming3, SUN Runjun1,2   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product in Ministry of Education, Xi'an Polytechnic University,Xi'an, Shaanxi 710048, China
    3. Shaanxi Huayan Aero-Instrument Co., Ltd., Hanzhong, Shaanxi 723102, China
  • Received:2020-05-20 Revised:2020-10-16 Online:2021-01-15 Published:2021-01-21

Abstract:

In order to investigate the effect of winding and twisting on the mechanical properties of the air-jet vortex spun yarns, the deformation and force loading of the fibers in air-jet vortex spun yarn during stretching process was analyzed theoretically in this paper, and the effect of the vortex pressure and the spinning speed on the mechanical properties of the vortex spun yarn was investigated in detail. The results indicate that the spiral wrapping of the outer fibers play a decisive role in the mechanical properties of the yarn. The vortex pressure and the spinning speed are the two main factors affecting wrapping and twisting effect of the vortex spinning. When the spinning speed was fixed as 280 m/min, the breaking tenacity and the initial modulus of the yarn demonstrate an increase followed by a decrease, with the breaking elongation virtually unchanged, with the increase of the vortex pressure. When the spinning speed was fixed as 280 m/min with the vortex pressure being 0.55 MPa, the optimum mechanical properties of the yarn were obtained. When the vortex pressure was fixed as 0.45 MPa, with the increase of the spinning speed, the breaking tenacity and the breaking elongation of the yarn both show a slight decreasing trend, and the initial modulus shows a decrease and then stabilized.

Key words: vortex spun yarn, wrapping and twisting, vortex pressure, spinning speed, mechanical properties

CLC Number: 

  • TS101.2

Fig.1

Overall longitudinal characteristics of vortex spinning yarn"

Fig.2

SEM image of local longitudinal characteristics of vortex spinning yarn(×50)"

Fig.3

Schematic diagram of axial tensile model of vortex spinning yarn"

Fig.4

Schematic diagram of force analysis of outer fibers during tensile process of vortex spinning yarn"

Tab.1

Equipment parameters of HYF air-jet vortex spinning machine"

前罗拉
与中罗拉
距离/mm
中罗拉
与第3罗拉
距离/mm
第3与
第4罗拉
距离/mm
前罗拉
与空芯锭
距离/mm
空芯锭
腔的
直径/mm
横动
角度/
(°)
44.5 1.1 16 44.5 1.1 16

Tab.2

Processing parameters of vortex spinning yarn samples"

样品
编号
涡流压力/
MPa
纺纱速度/
(m·min-1)
喂入比 张力比 总牵伸
倍率
主牵伸
倍率
1# 0.45 280 0.97 1.025 162 27
2# 0.50 280 0.97 1.025 162 27
3# 0.55 280 0.97 1.025 162 27
4# 0.60 280 0.97 1.025 162 27
5# 0.65 280 0.97 1.025 162 27
6# 0.45 320 0.97 1.025 162 27
7# 0.45 360 0.97 1.025 162 27
8# 0.45 400 0.97 1.025 162 27

Fig.5

SEM images of yarns under different vortex pressures(×50)"

Fig.6

Relationship between vortex pressure and wrapping and twisting index of the yarn forming"

Fig.7

SEM images of yarns formed at different spinning speeds(×50)"

Fig.7

SEM images of yarns formed at different spinning speeds(×50)"

Tab.3

Effect of different spinning speeds on wrapping and twisting index of vortex spinning yarn"

纺纱速度/
(m·min-1)
螺旋包缠角 螺距
平均值/
(°)
CV值/
%
平均值/
μm
CV值/
%
280 30.2 7.7 644.0 7.2
320 30.1 7.1 756.7 10.4
360 28.6 8.1 881.3 10.0
400 26.1 13.2 962.0 8.3

Tab.3

Effect of different spinning speeds on wrapping and twisting index of vortex spinning yarn"

纺纱速度/
(m·min-1)
螺旋包缠角 螺距
平均值/
(°)
CV值/
%
平均值/
μm
CV值/
%
280 30.2 7.7 644.0 7.2
320 30.1 7.1 756.7 10.4
360 28.6 8.1 881.3 10.0
400 26.1 13.2 962.0 8.3

Fig.8

Effect of different vortex pressures on mechanical properties of spinning yarn. (a) Breaking tenacity; (b) Breaking Elongation Rate; (c) Elastic Modulus"

Fig.8

Effect of different vortex pressures on mechanical properties of spinning yarn. (a) Breaking tenacity; (b) Breaking Elongation Rate; (c) Elastic Modulus"

Tab.4

Effect of different spinning speeds on mechanical properties of vortex spinning yarn"

纺纱速度/(m·min-1) 断裂比强度 断裂伸长率 弹性模量
平均值/(cN·tex-1) CV值/% 平均值/% CV值/% 平均值/(cN·tex-1) CV值/%
280 23.28 10.32 10.17 7.80 32.60 8.95
320 23.18 9.30 9.85 7.29 30.06 8.59
360 22.98 6.54 9.83 5.18 31.08 6.77
400 22.52 12.77 9.23 13.67 31.36 11.22

Tab.4

Effect of different spinning speeds on mechanical properties of vortex spinning yarn"

纺纱速度/(m·min-1) 断裂比强度 断裂伸长率 弹性模量
平均值/(cN·tex-1) CV值/% 平均值/% CV值/% 平均值/(cN·tex-1) CV值/%
280 23.28 10.32 10.17 7.80 32.60 8.95
320 23.18 9.30 9.85 7.29 30.06 8.59
360 22.98 6.54 9.83 5.18 31.08 6.77
400 22.52 12.77 9.23 13.67 31.36 11.22
[1] NAZAN Erdumlua, BULENT Ozipeka, WILLIAM Oxenham. Vortex spinning technology[J]. Textile Progress, 2012,44(3/4):141-174.
doi: 10.1080/00405167.2012.739345
[2] 邹专勇, 梁方阁, 程隆棣, 等. 喷气涡流纺纱线成形机理与结构[J]. 上海纺织科技, 2007,35(7):5-6,8.
ZOU Zhuanyong, LIANG Fangge, CHENG Longdi, et al. The yarn formation principle of jet vortex spinning and its structure[J]. Shanghai Textile Science & Technology, 2007,35(7):5-6,8.
[3] 陈梁. 喷气涡流纺纱工艺及喷嘴装置研究[D]. 上海:东华大学, 2014: 14.
CHEN Liang. Study on spinning process and jet vortex spinning nozzle device design[D]. Shanghai: Donghua University, 2014: 14.
[4] 于津霞. 喷气涡流纺(MVS)成纱结构及其织物性能的研究[D]. 青岛:青岛大学, 2007: 11-17.
YU Jinxia. Investigation on yarn structure and fabric properties of air-jet vortex spinning[D]. Qingdao: Qingdao University, 2007: 11-17.
[5] ZOU Zhuanyong, CHENG Longdi, XUE Wenliang, et al. A study of the twisted strength of the whirled airflow in murata vortex spinning[J]. Textile Research Journal, 2008,78(8):682-687.
doi: 10.1177/0040517508089753
[6] ZENG Yongchun, WAN Yuqin, YU Chongwen, et al. Controlling the air vortex twist in air-jet spinning[J]. Textile Research Journal, 2005,75(2):175-177.
doi: 10.1177/004051750507500216
[7] BASALl Guldemet, OXENHAM William. Effects of some process parameters on the structure and properties of vortex spun yarn[J]. Textile Research Journal, 2006,76(6):492-499.
doi: 10.1177/0040517506064253
[8] HAN Chenchen, XUE Wenliang, CHENG Longdi, et al. Comparative analysis of different jet vortex spinning hollow spindle groove structures on yarn mechanism and yarn properties[J]. Textile Research Journal, 2016,86(19):2022-2031.
doi: 10.1177/0040517515619354
[9] ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Analysis of the fiber spatial trajectory in vortex spun yarn[J]. Textile Research Journal, 2009,79(10):924-929.
doi: 10.1177/0040517508095609
[10] HAN Chenchen, XUE Wenliang, CHENG Longdi, et al. Comparative analysis of different jet vortex spinning hollow spindle groove structures on yarn mechanism and yarn properties[J]. Textile Research Journal, 2016,86(19):2022-2031.
[11] 何建, 裴泽光, 周键, 等. 喷气涡流纺金属丝包芯纱成纱过程的在线观测与分析[J]. 纺织学报, 2019,40(5):136-143.
HE Jian, PEI Zeguang, ZHOU Jian, et al. Online monitoring of formation process of vortex core-spun yarn containing metal wire[J]. Journal of Textile Research, 2019,40(5):136-143.
[12] 姚江薇, 邹专勇, 闫琳琳, 等. 喷气涡流纺纱线拉伸断裂强力预测模型构建与验证[J]. 纺织学报, 2018,39(10):32-37.
YAO Jiangwei, ZOU Zhuanyong, YAN Linlin, et al. Predicition model on tensile strength of air jet vortex spinning yarn and its verification.[J]. Journal of Textile Research, 2018,39(10):32-37.
[13] 李志红, 丁志荣, 王善元. 涡流喷气纱成纱结构与捻度测试方法探讨[J]. 上海纺织科技, 2005,33(11):24-30.
LI Zhihong, DING Zhirong, WANG Shanyuan. A probe of yarn forming structure and twist measurement method of votex spun[J]. Shanghai Textile Science & Technology, 2005,33(11):24-30.
[14] 于伟东, 储才元. 纺织物理[M]. 上海: 东华大学出版社, 2002: 320-333.
YU Weidong, CHU Caiyuan. Textile physics [M]. Shanghai: Donghua University Press, 2002: 320-333.
[15] XIE Y, OXENHAM W, GROSBERG P. A study of the strength of wrapped yarns: Part III: the relationship between structural parameters and strength[J]. Journal of The Textile Institute, 1986,77(5):314-326.
[16] 裴泽光, 俞兆昇, 郁崇文. 影响纯涤纶喷气涡流纱强度的因素[J]. 纺织学报, 2008,29(12):22-24.
PEI Zeguang, YU Zhaosheng, YU Chongwen. Effect of parameters on tenacity of polyester MVS yarn[J]. Journal of Textile Research, 2008,29(12):22-24.
[17] 胡革明, 江玲, 陈美玉, 等. 喷气涡流纺织物与传统环锭纺织物性能对比[J]. 棉纺织技术, 2017,45(1):26-30.
HU Geming, JIANG Ling, CHEN Meiyu, et al. Property comparison between air-jet vortex fabric and ring fabric[J]. Cotton Textile Technology, 2017,45(1):26-30.
[18] 邹专勇, 俞建勇, 薛文良, 等. 喷气涡流纺纱线细节产生机制分析[J]. 纺织学报, 2008,29(7):21-26.
ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Analysis of the cause leading to generation of thin places on the air jet vortex spun yarn[J]. Journal of Textile Research, 2008,29(7):21-26.
[19] OXENHAM William. Current and future trends in yarn production[J]. Journal of Textile and Apparel, Technology and Management, 2002,2(2):1-10.
[20] ZOU Zhuanyong, YU Jianyong, CHENG Longdi, et al. A study of generating yarn thin places of murata vortex spinning[J]. Textile Research Journal, 2009,79(2):129-137.
[1] YUE Chengfei, DING Changkun, LI Lu, CHENG Bowen. Carbodiimide / hydroxysuccinimide crosslinking modification and properties of collagen fibers [J]. Journal of Textile Research, 2020, 41(03): 1-7.
[2] . Infouence of spinneret draft on structure and properties of thermotropic liquid crystalline polyarylate fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(09): 162-165.
[3] . Manufacture and mechanical properties of negative Poisson's ratio warp knitted fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 43-48.
[4] . Study on the mechanical properties of the honeycomb cotton fabric strengthen polyurethane composites [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(9): 62-0.
[5] wei-lai chen. Testing and analyzing microstructures and mechanical properties of T800 elastic yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(3): 18-0.
[6] . Influence of milk protein grafting on the performance of rabbit fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(2): 10-15.
[7] . Structure and properties of photo-biodegradable polyethylene fibre [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(11): 1-5.
[8] . Photocatalysis and Mechanical Properties Analysis of PVAc/SnO2 Hybrid Nanofiber [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(8): 12-16.
[9] YANG Gesheng;SHAO Huili;HU Xuechao. Effect of spinning conditions on structures and properties of bamboo fibers with Lyocell process [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(1): 6-10.
[10] Qi LU. Study on Application of Titanate Coupling Agent in CaCO3-filled SF/PVA Blend Films [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(8): 12-15.
[11] Liu Yang;xu anchang;CHENG Qian;PAN Zhijuan. Effect of electrospinning process on structure and property of electrospun PA6/MWNTs yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(3): 1-6.
[12] XIA Xin;WEI Qufu;LI Jing. Preparation of electrospun high molecular weight chitosan/ Poly(ethylene oxide) composite nanofibers [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(3): 11-14.
[13] ZHU Xuzhao;IONG Jie;XU Shuyan;SONG Yeping;HUO Pengfei. Influences of treatment conditions on properties of UHMWPE fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(06): 10-14.
[14] XU Jihong;ZHANG Wenbin. Influential factors of distance ease on typical cross sections [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(05): 104-108.
[15] XIAO Hong;SHI Meiwu;LIU Jing. Impact of tension on the structure and properties of PET/PTT filaments [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(7): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!