Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (02): 135-141.doi: 10.13475/j.fzxb.20201008308

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Bonding fastness of magnetron sputtering nano-films with various textile substrates

LIU Mingxue1, ZHAO Qian1, WANG Xiaohui1, LIU Qiongxi2,3, SHAO Jianzhong1()   

  1. 1. Engineering Research Centre for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Guangdong Rising Well Science & Technology Co., Ltd., Jiangmen, Guangdong 529300, China
    3. Beijing Nano Color Science and Technology Co., Ltd., Beijing 100089, China
  • Received:2020-10-29 Revised:2020-11-21 Online:2021-02-15 Published:2021-02-23
  • Contact: SHAO Jianzhong E-mail:jshao@zstu.edu.cn

Abstract:

To address the problem that the magnetron sputtering nano-films on natural fiber substrates are prone to whole layer shedding, the rubbing fastness and soaping of the magnetron sputtering structural color films on different fiber substrates were systematically tested, and the effects of the initial moisture content and the low-temperature plasma surface modification on the bonding fastness of the magnetron sputtering films to the fiber substrates were investigated in detail. The underlying reasons for the different bonding fastness of the magnetron sputtering films to different fiber substrates were studied by means of scanning electron microscope analysis technique combined with the analysis on physical and chemical properties of different fiber materials. The results show that due to the softening point of the thermoplastic polyester fiber, the kinetic energy of the energetic magnetron sputtered particles is converted into thermal energy when they are deposited on the fiber surface, causing the polyester fibers to locally reach the softening point and bonding the sputtered particles. On the contrary, cotton and silk fibers have no softening point, so the fibers have no melt-bonding effect on the magnetron sputtering particles. In addition, as cotton and silk fibers have hygroscopic swelling properties, the intrusion of water molecules during the soaping process weakens the interaction force between the fibers and nanoparticles, causing the easy shedding of the magnetron sputtering nano-films.

Key words: magnetron sputtering, textile substrate, bonding fastness, structural coloration, low temperature plasma, moisture content, physical coloration

CLC Number: 

  • TS193.5

Tab.1

Color fastness of structurally colored fabrics with magnetron sputtering thin-film"

织物
基材
耐摩擦色牢度 耐皂洗
色牢度
干摩 湿摩
涤纶仿蚕丝a 5 4~5 3~4
涤纶仿蚕丝b 5 4~5 3~4
涤纶欧根纱a 5 4 3~4
涤纶欧根纱b 5 4~5 3~4
棉斜纹a 4~5 4 0
棉斜纹b 4 4 0
棉平纹a 4 4 0
棉平纹b 4 4 0
蚕丝斜纹绸a 4~5 4 0
蚕丝斜纹绸b 4 4 0
蚕丝缎纹a 4 4 0
蚕丝缎纹b 4 4 0

Tab.2

Relationship between initial moisture content and colorfastness to soaping of nano-films fabrics"

织物
基材
初始含水率/%
0 10 30 50 70 90
涤纶 3~4 3~4 3~4 3~4 3~4 3~4
0 0 0 0 0 0
蚕丝 0 0 0 0 0 0

Fig.1

Relationship between initial moisture content of fabrics and vacuum time"

Tab.3

Color fastness to soaping of magnetron sputtering coated fabrics"

织物基材 未处理 氧等离子体处理
涤纶 3~4 4
0 0
蚕丝 0 0

Fig.2

Effect of oxygen plasma treatment power on color fastness to soaping of magnetron sputtering coated fabrics"

Fig.3

FESEM images of original polyester(a), cotton(b) and silk fiber(c) surfaces"

Fig.4

FESEM images of copper nano-particles (a) and titanium nano-particles (b) magnetron sputtered fiber surfaces"

Fig.5

FESEM images of magnetron sputtered and soap washed sample surfaces.(a)Copper nano-particles sputtered and soap washed;(b) Titanium nano- particles sputtered and soap washed"

[1] 宋心远. 结构生色和染整加工:一[J]. 印染, 2005,17:46-48.
SONG Xinyuan. Structural color and dyeing and finishing processing:Ⅰ[J]. China Dyeing & Finishing, 2005,17:46-48.
[2] KINOSHITA S, YOSHIOKA S. Structural colors in nature: the role of regularity and irregularity in the structure[J]. Chemphyschem, 2005,6(8):1442-1459.
pmid: 16015669
[3] 张骜, 袁伟, 周宁, 等. 结构生色及其染整应用:一[J]. 印染, 2012,38(13):44-47.
ZHANG Ao, YUAN Wei, ZHOU Ning, et al. Structural color and its application in dyeing and finishing:I[J]. China Dyeing & Finishing, 2012,38(13):44-47.
[4] 张以忱. 真空镀膜技术[M]. 北京: 冶金工业出版社, 2009: 82-225.
ZHANG Yichen. Vacuum coating technology [M]. Beijing: Metallurgical Industry Press, 2009: 82-225.
[5] HAN Zhiwu, WU Liyan, QIU Zhaomei, et al. Microstructure and structural color in wing scales of butterfly Thaumantis diores[J]. Chinese Science Bulletin, 2009,54(4):535-540.
[6] GRINDSTAFF J L, LOVEM M B, BURTKA J L, et al. Structural coloration signals condition, parental investment, and circulating hormone levels in Eastern bluebirds (Sialiasialis)[J]. Journal of Comparative Physiology A, 2012,198(8):625-637.
[7] 苏喜林, 郭丽芬, 张旺, 等. 一种镀膜材料及其制备方法:2007101606589[P]. 2009-07-01.
SU Xilin, GUO Lifen, ZHANG Wang, et al. A coating material and its preparation method: 2007101606589[p]. 2009-07-01.
[8] 叶丽华, 杜文琴. 结构色织物的光学性能[J]. 纺织学报, 2016,37(8):83-88.
YE Lihua, DU Wenqin. Optical properties of structured colored fabrics[J]. Journal of Textiles Research, 2016,37(8):83-88.
[9] DIOP D K, SIMONOT L, DESTOUCHES N, et al. Magnetron sputtering deposition of Ag/TiO2nanocomposite thin films for repeatable and multicolor photochromic applications on flexible substrates[J]. Advanced Materials Interfaces, 2015,2(14):1-9.
[10] 袁小红. 基于表面沉积技术的多功能结构生色纺织品的研究[D]. 无锡:江南大学, 2017: 81-89.
YUAN Xiaohong. Research on multifunctional structural coloring-producing textiles based on surface deposition technology[D]. Wuxi: Jiangnan University, 2017: 81-89.
[11] YUAN Xiaohong, WEI Qufu. Structural colour of polyester fabric coated with Ag/TiO2 multilayer films[J]. Surface Engineering, 2016,33(3):231-236.
doi: 10.1080/02670844.2016.1216264
[12] 徐文正, 魏取福, 袁小红, 等. 磁控溅射制备PET非织造布基Ag膜的结构及其电磁屏蔽性能[J]. 材料科学与工程学报, 2018,36(6):932-935,992.
XU Wenzheng, WEI Qufu, YUAN Xiaohong, et al. Structure and electromagnetic shielding properties of Ag film based on PET nonwoven by magnetron sputte-ring[J]. Journal of Materials Science and Engineering, 2018,36(6):932-935,992.
[13] 叶丽华, 杜文琴. 磁控溅射工艺参数对涤纶织物结构色出色效果的影响[J]. 五邑大学学报(自然科学版), 2015,29(3):16-22.
YE Lihua, DU Wenqin. Effect of magnetron sputtering parameters on excellent color effect of polyester fabric structure[J]. Journal of Wuyi University (Natural Science Edition), 2015,29(3):16-22.
[14] 蔡珍. 磁控溅射镀色织物制备及其色牢度研究[D]. 江门:五邑大学, 2018: 1-8.
CAI Zhen. Preparation and color fastness of magnetron sputtering coated fabrics[D]. Jiangmen: Wuyi University, 2018: 1-8.
[15] SCHOLZ J, NOCKE G, HOLLSTEIN F, et al. Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties[J]. Surface & Coatings Technology, 2005,192(2):252-256.
[16] 刘琼溪, 张欣, 余荣沾, 等. 纳米生色面料防紫外线性能研究[J]. 染整技术, 2019,41(6):13-15.
LIU Qiongxi, ZHANG Xin, YU Rongzhan, et al. Study on UV protection of nano-colored fabrics[J]. Textile Dyeing and Finishing, 2019,41(6):13-15.
[17] 刘琼溪, 张欣, 余荣沾. 纳米生色技术的原理与优势[J]. 染整技术, 2019,41(2):3-6.
LIU Qiongxi, ZHANG Xin, YU Rongzhan. Principle and advantage of nano-color generation technology[J]. Textile Dyeing and Finishing, 2019,41(2):3-6.
[18] 蔡再生. 纤维化学与物理[M]. 北京: 中国纺织出版社, 2004: 114-116.
CAI Zaisheng. Fiber chemistry and physics[M]. Beijing: China Textile & Apparel Press, 2004: 114-116.
[19] 代国亮. 聚酯纤维及织物的电子束辐照改性[D]. 上海:东华大学, 2015: 36-57.
DAI Guoliang. Electron beam irradiation modification of polyester fibers and fabrics[D]. Shanghai: Donghua University, 2015: 36-57.
[20] 汪建华, 张申勇. 等离子体处理提高真丝织物亲水性的研究[C]// 21世纪信息技术生态纺织品国际研讨会. 北京:中国科学技术协会, 2002: 427-431.
WANG Jianhua, ZHANG Shenyong. Study on improving the hydrophilicity of silk fabrics by plasma treat-ment[C]// International Symposium on Information Technology Ecological Textiles for the 21st Century.Beijing: Association for Science and Technology, 2002: 427-431.
[21] 谷笑雨, 戚涵姝, 李昊原, 等. 低温等离子体处理对高分子材料表面改性的研究进展[J]. 化学工程与装备, 2016 (12):4-6.
GU Xiaoyu, QI Hanshu, LI Haoyuan, et al. Research progress on surface modification of polymer materials by low-temperature plasma treatment[J]. Chemical Engineering & Equipment, 2016(12):4-6.
[22] 耿轶凡, 张佩华. 低温低压等离子体处理对涤纶织物吸湿性能的影响[J]. 国际纺织导报, 2009(4):34-36.
GENG Yifan, ZHANG Peihua. Effect of low temperature and low pressure plasma treatment on moisture absorption of polyester fabric[J]. China Textile Leader, 2009(4):34-36.
[23] 宋扬, 李方俊. 低温等离子体处理对纤维毡润湿性能的影响[J]. 功能材料, 2017,48(4):4189-4193.
SONG Yang, LI Fangjun. Effect of low-temperature plasma treatment on wettability of fiber felt[J]. Journal of Functional Materials, 2017,48(4):4189-4193.
[24] REDDY N, SALAM A, YANG Y. Effect of structures and concentrations of softeners on the performance properties and durability to laundering of cotton fabrics[J]. Industrial & Engineering Chemistry Research, 2008,47(8):2502-2510.
[25] 吴颖喆, 邵建中, 付国栋. 纤维素酶洗涤对提高涤棉织物易去污性的作用机理[J]. 浙江理工大学学报, 2012(1):40-43.
WU Yingzhe, SHAO Jianzhong, FU Guodong. Effect mechanism of cellulase washing on improving the decontamability of poly-cotton fabric[J]. Journal of Zhejiang Sci-Tech University, 2012(1):40-43.
[1] . Study on the properties of Ag/ZnO composite film deposited on the surface of polyester fabrics [J]. , 2021, 42(03): 0-0.
[2] YU Jia, XIN Binjie, ZHUO Tingting, ZHOU Xi. Preparation and characterization of Cu/polypyrrole-coated wool fabrics for high electrical conductivity [J]. Journal of Textile Research, 2021, 42(01): 112-117.
[3] LÜ Hanming, WANG Xiangyu, LIU Fengkun. Estimating water content of acetate fiber spunlaced nonwovens with dielectric spectroscopy [J]. Journal of Textile Research, 2020, 41(06): 55-60.
[4] . Low temperature plasma treatment of basalt filament surface and sizing strand integrity thereof [J]. Journal of Textile Research, 2018, 39(12): 24-29.
[5] . Dyeing properties of kapok fiber treated by low temperature plasma [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 88-94.
[6] . Infouence of moisture content on heat stored performance of multilayer fabric assemblies for firefighters [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 108-113.
[7] . Structure analysis and color formation of Liang cloth [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 85-89.
[8] . Research progress of magnetron sputtering in textiles [J]. Journal of Textile Research, 2016, 37(4): 165-169.
[9] . Optics Properties of fabric with multiple structural colors [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(08): 83-88.
[10] .  Low temperature dyeing property of plasma-treated wool with Lanasol CE series reactive dyes [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(09): 61-64.
[11] . Structure and properties of Ag coatings on nanofibers prepared by magnetron sputtering [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(4): 32-0.
[12] . Effect of plasma-protease combined treatment on shrink-resistance [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 89-93.
[13] . Effects of soil moisture content in Granzhong area on ageing of silk fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(11): 66-0.
[14] . Method for fabric moisture content measurement based on microwave technique [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(9): 61-65.
[15] LIU Shu-Qiang, DAI Jin-Ming, JIA Hu-Sheng, LIU Xu-Guang, XU Bing-She. Drying process of polylactic acid chip for spinning filaments [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(7): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!