Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (03): 89-94.doi: 10.13475/j.fzxb.20200707906

• Textile Engineering • Previous Articles     Next Articles

Detection of fabric shape retention based on image processing

TANG Qianhui, WANG Lei(), GAO Weidong   

  1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2020-07-30 Revised:2020-12-07 Online:2021-03-15 Published:2021-03-17
  • Contact: WANG Lei E-mail:wangl_jn@163.com

Abstract:

In order to evaluate the shape retention of a fabric comprehensively and accurately, a dynamic detection system was developed to simulate the recovery process of fabric flattening after being creased in daily uses. The video sequence of fabric crease recovery is obtained by the detection system, and the single frame video image at each time is extracted by the program, and then the image is preprocessed, binarized and refined in turn. The indexes reflecting the fabric shape retention, including angle, height and shape preserving area, are extracted. The experimental results show that in the crease recovery stage, the change rate of each index gradually decreases with time. Under the condition of pressure 10 N and pressure time 10 s, the sample tends to become stable after 60 s in recovery stage. A linear relationship exists between the angle at 60 s and the wrinkle recovery angle measured by the existing standard method, and relationships between the height, shape retention area and the drape coefficient are linear too. The results show that the system can predict the wrinkle recovery angle and drape coefficient of fabric through the three indexes of angle, height and shape retention area, and it can accurately describe the dynamic change process of fabric shape, and can be used to evaluate the fabric shapes accurately and comprehensively.

Key words: fabric shape retention, wrinkle recovery, drape, image processing, dynamic measurement, video sequence

CLC Number: 

  • TS101.9

Fig.1

Fabric shape retention testing device"

Fig.2

One frame of video image (a) ,binary image (b) and thinning image (c)"

Tab.1

Sample specifications"

编号 原料 组织 纱线线
密度/tex
经纬密/
(根·(10 cm)-1)
整理方式
经纱 纬纱 经向 纬向
1# 平纹 14.6 14.6 120 70 丝光潮交联
2# 涤纶 二上二下
左斜纹
7.4 19.7 780 420
3# 亚麻 凸条 14.8 19.7 660 322
4# 平纹 9.7 9.7 787 394
5# 平纹 9.7 9.7 669 354

Fig.3

Warp sample image"

Fig.4

Dynamic change of shape retention index. (a) Warp apex angle; (b) Weft apex angle; (c) Warp height; (d) Weft height;(e) Warp shape retention area; (f) Weft shape retention area"

Tab.2

Result of fabric shape retention test at 60 s during crease recovery stage"

编号 顶角/(°) 顶高/cm 保形面积/cm2
经向 纬向 经向 纬向 经向 纬向
1# 154.8 149.8 0.35 0.60 1.44 2.22
2# 157.8 155.0 0.68 0.79 2.50 3.47
3# 122.4 113.9 0.49 0.63 1.44 1.50
4# 125.4 120.8 0.54 0.75 1.57 2.24
5# 132.8 129.2 0.49 0.68 1.55 2.32

Tab.3

Average value of fabric wrinkle recovery angle according to AATCC 66—2014 manual method"

编号 折皱回复角/(°)
经向 纬向
1# 147.4 142.8
2# 143.1 144.7
3# 111.6 98.6
4# 92.8 71.9
5# 95.0 83.4

Tab.4

Average value of fabric drape coefficient according to GB/T 23329—2009 manual method"

编号 悬垂系数/%
静态 动态
1# 48.62 58.30
2# 72.26 76.87
3# 50.17 53.54
4# 59.55 62.23
5# 53.54 58.98
[1] 宗亚宁, 张海霞. 纺织材料学[M]. 上海: 东华大学出版社, 2013: 334.
ZONG Yaning, ZHANG Haixia. Textile materials science [M]. Shanghai: Donghua University Press, 2013: 334.
[2] 王蕾, 刘建立, 潘如如, 等. 基于视频序列的织物折皱回复角动态测量[J]. 纺织学报, 2013,34(2):55-60.
WANG Lei, LIU Jianli, PAN Ruru, et al. Dynamic measurement of fabric wrinkle recovery angle based on video sequence[J]. Journal of Textile Research, 2013,34(2):55-60.
[3] RAJA Zaouali, SLASH Msahli, FAOUZI Sakli. Energy modelling of fabrics wrinkle recovery behaviour[J]. Journal of The Textile Institute, 2016,107(11):1-8.
doi: 10.1080/00405000.2014.999478
[4] 陈明, 周华, 杨兰君, 等. 织物三维悬垂形态测试指标与三维重建[J]. 纺织学报, 2008,29(9):51-55.
CHEN Ming, ZHOU Hua, YANG Lanjun, et al. Three-dimensional fabric drape morphology test indexes and three-dimensional reconstruction[J]. Journal of Textile Research, 2008,29(9):51-55.
[5] 张晓婷, 洪剑寒, 査神爱, 等. 基于三维扫描技术的毛织物悬垂性能测试方法[J]. 毛纺科技, 2015,43(10):58-61.
ZHANG Xiaoting, HONG Jianhan, CHA Shenai, et al. Wool fabric drape performance test method based on 3D scanning technology[J]. Wool Textile Journal, 2015,43(10):58-61.
[6] SUNDARESAN S, PASUPATHI S A, SASIKALA L, 等. 悬垂角测试仪[J]. 国际纺织导报, 2019,47(1):50-52.
SUNDARESAN S, PASUPATHI S A, SASIKALA L, et al. Drape angle tester[J]. Melliand China, 2019,47(1):50-52.
[7] 郑鹏程, 汪学骞, 陈翟. 双模型互证法在评判休闲西裤外观保持性中的运用[J]. 纺织学报, 2007,28(3):79-83,99.
ZHENG Pengcheng, WANG Xueqian, CHEN Zhai. Application of the double-model mutual authentication method in judging the retention of the appearance of casual trousers[J]. Journal of Textile Research, 2007,28(3):79-83,99.
[8] 赵超, 刘新金, 王广斌. 基于KES与PhabrOmeter测试系统的棉织物保形性对比[J]. 丝绸, 2017,54(12):26-31.
ZHAO Chao, LIU Xinjin, WANG Guangbin. Comparison of shape retention of cotton fabric based on KES and PhabrOmeter test system[J]. Journal of Silk, 2017,54(12):26-31.
[9] 李了了, 邓善熙, 丁兴号. 基于大津法的图像分块二值化算法[J]. 微计算机信息, 2005(14):76-77.
LI Liaoliao, DENG Shanxi, DING Xinghao. Image block binarization algorithm based on otsu method[J]. Microcomputer Information, 2005(14):76-77.
[10] 吕俊白. 一种有效的二值图像细化算法[J]. 计算机工程, 2003(18):147-148.
LÜ Junbai. An effective binary image thinning algorithm[J]. Computer Engineering, 2003(18):147-148.
[11] 郭斯羽, 孔亚广, 张煦芳. 基于Hough变换的角点检测算法[J]. 仪器仪表学报, 2008(11):2424-2429.
GUO Siyu, KONG Yaguang, ZHANG Xufang. Corner detection algorithm based on Hough transform[J]. Chinese Journal of Scientific Instrument, 2008(11):2424-2429.
[1] LI Dongjie, GUO Shuai, YANG Liu. Yarn defect detection based on improved image threshold segmentation algorithm [J]. Journal of Textile Research, 2021, 42(03): 82-88.
[2] MENG Shuo, XIA Xuwen, PAN Ruru, ZHOU Jian, WANG Lei, GAO Weidong. Detection of fabric density uniformity based on convolutional neural network [J]. Journal of Textile Research, 2021, 42(02): 101-106.
[3] LI Xintong, GAO Zhe, GU Hongyang, CONG Honglian. Study on stiffness style of knitted suit fabrics [J]. Journal of Textile Research, 2020, 41(11): 53-58.
[4] YU Zhicai, ZHONG Yueqi, GONG R Hugh, XIE Haoyang, HUSSAIN Azmat. Fabric matching based on three-dimensional drape model and fabric weight [J]. Journal of Textile Research, 2020, 41(10): 46-51.
[5] HU Xiaorui, SUN Fengxin, XIAO Caiqin, GAO Weidong. Characterization of wrinkle recovery of fabrics based on in-situ mechanical testing [J]. Journal of Textile Research, 2020, 41(10): 41-45.
[6] SU Xuzhong, WEI Yanhong, LIU Xinjin, XIE Chunping. Effect of spinning method on wrinkle-resistance and tensile elasticity of fabric [J]. Journal of Textile Research, 2020, 41(04): 33-38.
[7] ZHANG Zhengye, XIN Binjie, DENG Na, CHEN Yang, XING Wenyu. Research and application of algorithm for measuring hemp fiber cross-sectional parameters based on boundary tracking [J]. Journal of Textile Research, 2020, 41(02): 39-43.
[8] WEI Yanhong, LIU Xinjin, XIE Chunping, SU Xuzhong, ZHANG Zhongxi. Shape retention and wearing properties of polyester filament/cotton composite yarn twill fabrics [J]. Journal of Textile Research, 2019, 40(12): 39-44.
[9] WU Yilun, LI Zhongjian, PAN Ruru, GAO Weidong, ZHANG Ning. Weft knitted fabric appearance simulation using colored spun yarn image [J]. Journal of Textile Research, 2019, 40(06): 111-116.
[10] HUANG Jiajun, KE Wei, WANG Jing, DENG Zhongmin. Color shading detection and rating system for denim based on computer vision [J]. Journal of Textile Research, 2019, 40(05): 163-169.
[11] WANG Wendi, XIN Binjie, DENG Na, LI Jiaping, LIU Ningjuan. Identification and application of yarn hairiness using adaptive threshold method under single vision [J]. Journal of Textile Research, 2019, 40(05): 150-156.
[12] CAI Yichao, ZHOU Xiao, SONG Mingfeng, MOU Xin'gang. Defect detection of cheese yarn based on multi-scale multi-direction template convolution [J]. Journal of Textile Research, 2019, 40(04): 152-157.
[13] . Detection and evaluation on yarn hairiness of blackboard with image processing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 144-149.
[14] . Position recognition of spinning yarn breakage based on convolution neural network [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 136-141.
[15] . Measurement of fabric bending and draping performance using crossing method [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 42-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!