Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (03): 71-76.doi: 10.13475/j.fzxb.20200805206

Special Issue: Preparation of Nano-fiber and Its Application

• Fiber Materials • Previous Articles     Next Articles

Preparation of SiO2 in-situ doped polyvinylidene fluoride nanofiber membrane and its properties

CHENG Yue1, AN Qi1, LI Dawei1,2, FU Yijun1,2(), ZHANG Wei1,2, ZHANG Yu1,2   

  1. 1. College of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2020-08-10 Revised:2020-12-15 Online:2021-03-15 Published:2021-03-17
  • Contact: FU Yijun E-mail:fuyj@ntu.edu.cn

Abstract:

To improve the piezoelectric properties of polyvinylidene fluoride (PVDF), silicon dioxide (SiO2) in-situ doped PVDF composite nano fiber membranes were prepared via the sol-gel method and high-voltage electrospinning technology with PVDF and ethylsilicate (TEOS) as raw materials, N, N-dimethyl formamide (DMF) and acetone as mixed solvent. Surface micromorphology, chemical composition, mechanical and piezoelectric properties of the nanofiber membranes were compared and analyzed. Results show that the mass and thickness of composite nanofiber membranes ascended with the increase of TEOS. Electrospinning converted part of the α phase in PVDF to β phase, and the β phase content of pure PVDF nanofiber membrane was (31.42±0.62)%, which was 1.54 times higher than PVDF powder. Moreover, the content of β phase was further improved by in-situ doping of nano-SiO2, and peak value of (42.59±0.62)% was achieved when the mass of TEOS was 1.643 g. With the increase of nano-SiO2, both tensile force and output voltage of composite nanofiber membranes demonstrated an increase-decrease trend. In addition, when the mass of TEOS was 1.643 g, SiO2 in-situ doped PVDF nanofiber membrane exhibited the highest tensile strength and output voltage, which were (8.03±0.19) N, and (2.33±0.13) V, respectively.

Key words: in-situ composite, sol-gel, electrospinning, nanofiber membrane, piezoelectric property, polyvinylidene fluoride, organic piezoelectric material

CLC Number: 

  • TS102.6

Tab.1

Design of experimental scheme"

试样编号 质量/g
TEOS PVDF DMF 丙酮
1# 0.000 1.110 6 4
2# 0.400 1.126 6 4
3# 0.802 1.136 6 4
4# 1.219 1.149 6 4
5# 1.643 1.163 6 4
6# 2.078 1.176 6 4

Fig.1

SEM images of different nanofiber membranes(×10 000)"

Tab.2

Surface density and thickness of different nanofiber films"

试样编号 面密度/(g·m-2) 厚度/mm
1# 0.030 8±0.005 1 0.181 0±0.175 0
2# 0.033 0±0.005 2 0.184 7±0.022 0
3# 0.040 4±0.006 8 0.244 3±0.016 3
4# 0.048 7±0.007 6 0.285 0±0.006 0
5# 0.049 1±0.004 7 0.291 2±0.005 4
6# 0.069 1±0.002 0 0.311 8±0.014 4

Fig.2

FT-IR spectra of PVDF power and different nanofiber membranes"

Fig.3

β phase content of PVDF powder and different nanofiber membrane"

Fig.4

Tensile strength of different nanofiber membrane"

Fig.5

Output voltage of different nanofiber membrane"

[1] LI Jie, ZHAO Chunmao, XIA Kai, et al. Enhanced piezoelectric output of the PVDF-TrFE/ZnO flexible piezoelectric nanogenerator by surface modification[J]. Applied Surface Science, 2019,463(1):626-634.
[2] LEE H, ZHANG S, BAR-COHEN Y, et al. High temperature, high power piezoelectric composite transducers[J]. Sensors, 2014,14(8):14526-14552.
doi: 10.3390/s140814526 pmid: 25111242
[3] DAGDEVIREN C, JOE P, TUZMAN O L, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation[J]. Extreme Mechanics Letters, 2016,9:269-281.
[4] XIN Yi, ZHU Jianfeng, SUN Hongshuai, et al. A brief review on piezoelectric PVDF nanofibers prepared by electrospinning[J]. Ferroelectrics, 2018,526(1):140-151.
[5] DEUTZ D B, MASCARENHAS N T, SCHELEN J B J, et al. Flexible piezoelectric touch sensor by alignment of lead-free alkaline niobate microcubes in PDMS[J]. Advanced Functional Materials, 2017,27(24):169-170.
[6] XIE M, ZHANG Y, KRANY M J, et al. Flexible and active self-powered pressure, shear sensors based on freeze casting ceramic-polymer composites[J]. Energy & Environmental Science, 2018,11(10):2919-2927.
doi: 10.1039/c8ee01551a pmid: 30713583
[7] PAIK H, CHOI Y Y, HONG S, et al. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films[J]. Scientific Reports, 2015,5(1):4-5.
[8] BHAVANASI Venkateswarlu, KUMAR Vipin, PARIDA Kaushik, et al. Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide[J]. ACS Applied Materials & Interfaces, 2016,8(1):521-529.
doi: 10.1021/acsami.5b09502 pmid: 26693844
[9] HABIBUR R M, YAQOOB U, MUHAMMAD S, et al. The effect of RGO on dielectric and energy harvesting properties of P(VDF-TrFE) matrix by optimizing electroactive β phase without traditional polling process[J]. Materials Chemistry and Physics, 2018,215:46-55.
[10] PEREIRA F, CHAN A, VALLÉ K, et al. Design of interpenetrated networks of mesostructured hybrid silica and nonconductive poly(vinylidene fluoride)-cohexafluoropropylene (PVDF-HFP) polymer for proton exchange membrane fuel cell applications[J]. Chem Asian J, 2011,6(5):1217-1224.
doi: 10.1002/asia.201000784 pmid: 21360682
[11] PONNAIAH A, RENGAPILLAI S, KARUPPIAH D, et al. High capacity prismatic type layered electrode with anionic redox activity as an efficient cathode material and PVDF/SiO2 composite membrane for a sodium ion battery[J]. Polymers, 2020,12(3):662.
[12] 李哲. 溶胶-凝胶法制备纳米ZnO的实验研究[D]. 重庆: 重庆大学, 2008: 13-17.
LI Zhe. Experimental study on nanometer zinc oxide prepared by sol-gel[D]. Chongqing: Chongqing University, 2008: 13-17.
[13] 吴倩倩, 李珂, 杨立双, 等. PVDF/SiO2复合纳米纤维膜的制备及性能研究[J]. 南通大学学报(自然科学版), 2019,18(4):83-88.
WU Qianqian, LI Ke, YANG Lishuang, et al. Preparation and properties of PVDF/SiO2 composite nanofiber membranes[J]. Journal of Nantong University (Natural Science Edition), 2019,18(4):83-88.
[14] CAI Xiaomei, LEI Tingping, SUN Daoheng, et al. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR[J]. RSC Advances, 2017,7(25):15382-15389.
[15] 吴倩倩, 倪瑞燕, 安琪, 等. PVDF/PAN微电流伤口敷料的制备及其性能[J]. 纺织导报, 2018(11):75-78.
WU Qianqian, NI Ruiyan, AN Qi, et al. Preparation and properties of PVDF/PAN micro-current wound dressings[J]. China Textile Leader, 2018(11):75-78.
[16] SINHA N, GOEL S, JOSEPH A J, et al. Y-doped ZnO nanosheets: gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator[J]. Ceramics International, 2018,44(7):8582-8590.
[17] WAN A B, HWAL S J, SO-YUN K, et al. Smart sensor systems for wearable electronic devices[J]. Polymers, 2017,9(8):303-343.
[18] 李静静, 卢辉, 蒋洁, 等. 高压电性静电纺柔性氧化锌/聚偏氟乙烯复合纤维膜[J]. 纺织学报, 2018,39(2):1-6.
LI Jingjing, LU Hui, JIANG Jie, et al. High voltage electrostatic spinning flexible zinc oxide/polyvinylidene fluoride composite fiber film[J]. Journal of Textile Research, 2018,39(2):1-6.
doi: 10.1177/004051756903900101
[19] 梁爽, 郑茂梅, 孙平, 等. 聚偏氟乙烯结晶结构及其β相制备方法的研究[J]. 压电与声光, 2013,35(5):719-723.
LIANG Shuang, ZHENG Maomei, SUN Ping, et al. Researches on crystal structure and preparation methods of β-phase polyvinylidene fluoride[J]. Piezoelectrics & Acoustooptics, 2013,35(5):719-723.
[20] TIWARI V, SRIVASTAVA G. Enhanced dielectric and piezoelectric properties of 0-3 PZT/PVDF composites[J]. Ceramics International, 2016,41(3):8008-8013.
doi: 10.1016/j.ceramint.2015.02.148
[21] 尹春生. 纳米SiO2与锌铝合金复合改性的聚氨酯/环氧树脂防腐涂层[D]. 南京: 南京航空航天大学, 2018: 54-59.
YIN Chunsheng. Nano-SiO2 and Zn-Al alloy multiply modified polyurethane/epoxy antiseptic coating[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 54-59.
[22] XIA Yang, LI Jiaojiao, WANG Hongjie, et al. Synjournal and electrochemical performance of poly(vinylidene fluoride)/SiO2 hybrid membrane for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2018,23(3):519-527.
doi: 10.1007/s10008-018-4161-2
[23] 徐润平. 二氧化硅原位交联耐溶剂复合纳滤膜的制备及其性能研究[D]. 杭州: 浙江理工大学, 2019: 20-23.
XU Runping. Preparation and characterization of silica in-situ crosslinking solvent-resistant composite nanofiltration membrane[D]. Hangzhou: Zhejiang Sci-Tech University, 2019: 20-23.
[24] KONG Fangyun, CHANG Mengzhou, WANG Zhenqing. Investigation of the effect of nanosilica on mechanical, structural, and fracture toughness of polyvinylidene fluoride films[J]. Materials Research Express, 2019,6(10):105369-105369.
doi: 10.1088/2053-1591/ab413b
[25] 魏延超, 洪晓斌, 许静, 等. 锂硫电池用LiPFSD/PVDF/SiO2复合膜的研究[J]. 电源技术, 2019,43(1):16-19.
WEI Yanchao, HONG Xiaobin, XU Jing, et al. Research on LiPFSD/PVDF/SiO2 composite membranes used in lithium-sulfur batteries[J]. Chinese Journal of Power Sources, 2019,43(1):16-19.
[26] 吴倩倩, 李珂, 杨立双, 等. 载药聚偏氟乙烯伤口敷料的制备及其性能[J]. 纺织学报, 2020,41(1):26-31.
WU Qianqian, LI Ke, YANG Lishuang, et al. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings.[J] Journal of Textile Research, 2020,41(1):26-31.
[27] WEI Fayun, CHENG Yue, WU Qianqian, et al. Preparation and properties of electrospun polyvinylidene fluoride (PVDF)/polyurethane (PU) composite nanofiber membranes[J]. Journal of Donghua University (English Edition), 2019,36(5):445-450.
[1] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49.
[2] XING Yusheng, HU Yi, CHENG Zhongling. Preparation and properties of Si/TiO2 composite carbon nanofibers [J]. Journal of Textile Research, 2021, 42(03): 36-43.
[3] GUO Xuesong, GU Jiayi, HU Jianchen, WEI Zhenzhen, ZHAO Yan. Preparation and properties of polyacrylonitrile/carboxyl styrene butadiene latex composite nanofibrous membranes [J]. Journal of Textile Research, 2021, 42(02): 34-40.
[4] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[5] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[6] MA Junzhi, GE Hong, WANG Dong, FU Shaohai. Preparation and properties of sol-gel modified flame retardant viscose fiber [J]. Journal of Textile Research, 2021, 42(01): 10-15.
[7] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[8] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[9] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[10] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[11] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[12] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[13] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[14] WANG Yang, CHENG Chunzu, JIANG Li'na, REN Yuanlin, GUO Yingbin. Preparation of durable flame retardant polyacrylonitrile fabrics using UV-induced photo-grafting polymerization combined with sol-gel coating [J]. Journal of Textile Research, 2020, 41(10): 107-115.
[15] LIU Jinxu, LIU Pengqing. Advances in flame-retardant surface treatments for textiles [J]. Journal of Textile Research, 2020, 41(10): 178-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!