Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (05): 46-50.doi: 10.13475/j.fzxb.20200901605

• Textile Engineering • Previous Articles     Next Articles

Effect of ratio of strands twist factor to single yarn twist factor on properties of viscose plied yarns

NI Jie1, YANG Jianping2, YU Chongwen1,3()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. College of Information Sciences and Technology, Donghua University, Shanghai 201620, China
    3. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2020-09-07 Revised:2020-12-29 Online:2021-05-15 Published:2021-05-20
  • Contact: YU Chongwen E-mail:yucw@dhu.edu.cn

Abstract:

In order to reflect comprehensively the influence of single yarn structural parameters on the properties of plied yarns, the influence of twist factor ratio on the strength, hairiness and wear resistance was studied with ring spun yarns made from viscose fiber with different yarn linear density and twists. The results show that there are two critical twist factor ratios for the reversely twisted plied yarns, which are about 0.7 and 1.5 respectively. At these two twist factor ratios, plied yarns can obtain higher strength. When the twist factor ratio is greater than 1, the number of harmful hairiness on the strands surface is reduced significantly. When the twist factor ratio is between 0 and 2, the larger the twist factor ratio is, the better the strands wear resistance. According to the overall comparison, twist factor ratio at 1.5 ensures the best comprehensive quality of the strands.

Key words: viscose fiber, double plied yarn, twist factor ratio, reverse twisting, plied yarn performance, ring spinning

CLC Number: 

  • TS101.9

Tab.1

Fiber performance parameters"

原料 纤维长度/
mm
线密度/
dtex
断裂强力/
cN
断裂伸长率/
%
普通粘胶 38 1.33 3.51 22.46
莫代尔纤维 39 1.30 4.31 15.89

Tab.2

Designed single yarn specification and ply method"

单纱
编号
原料 设计线密度/
tex
设计捻度/
(捻·m-1)
设计
捻系数
单纱
组合
A1 普通粘胶 18 700 297 A1+A2
A2 普通粘胶 18 700 297
A3 普通粘胶 15 700 271 A3+A4
A4 普通粘胶 15 900 349
B1 莫代尔 15 700 271 B1+B2
B2 莫代尔 30 700 383
B3 莫代尔 15 800 310 B3+B4
B4 莫代尔 25 800 400
C1 莫代尔 15 850 329 C1+C2
C2 莫代尔 20 700 313
C3 莫代尔 15 850 329 C3+C4
C4 莫代尔 20 600 268

Tab.3

Single yarn tensile test results"

单纱
编号
实测线密度/tex 实测捻度/
(捻·m-1)
实际捻系数 断裂强力/cN 断裂强度/
(cN·tex-1)
断裂强力
CV值/%
断裂伸长率/% 断裂伸长率
CV值/%
A1 17.67 708 298 221.37 12.53 6.92 9.17 10.13
A2 17.93 700 296 219.80 12.26 5.37 7.84 9.67
A3 14.90 716 276 177.63 11.92 6.46 8.25 9.78
A4 15.57 878 347 198.83 12.77 6.50 9.43 8.66
B1 14.50 699 266 248.70 17.15 9.81 8.04 8.59
B2 29.50 730 397 513.70 17.41 6.51 9.90 5.18
B3 14.97 795 308 257.47 17.20 7.92 8.33 8.13
B4 25.10 829 415 429.60 17.12 7.67 9.18 7.19
C1 15.00 865 335 214.07 14.27 8.48 5.57 11.08
C2 20.20 698 314 346.83 17.17 7.07 8.49 7.74
C3 14.97 851 329 210.83 14.08 9.35 5.70 13.59
C4 20.03 583 261 338.80 16.91 6.53 7.89 7.27

Tab.4

Actual strand twist coefficient and twist coefficient ratio"

单纱
组合
捻系数 捻系
数比
单纱
组合
捻系数 捻系
数比
单纱
组合
捻系数 捻系
数比
单纱
组合
捻系数 捻系
数比
单纱
组合
捻系数 捻系
数比
单纱
组合
捻系数 捻系
数比
A1+A2 67 0.23 A3+A4 59 0.19 B1+B2 101 0.30 B3+B4 102 0.28 C1+C2 93 0.29 C3+C4 67 0.23
94 0.32 120 0.39 165 0.50 197 0.54 178 0.55 90 0.30
160 0.54 180 0.58 238 0.72 262 0.73 247 0.76 158 0.54
210 0.71 227 0.73 296 0.89 323 0.89 300 0.93 227 0.77
274 0.92 281 0.90 374 1.13 380 1.05 357 1.10 275 0.93
331 1.12 341 1.09 434 1.31 481 1.33 411 1.27 340 1.15
396 1.33 395 1.27 496 1.50 541 1.50 475 1.47 400 1.35
453 1.52 446 1.43 591 1.78 608 1.68 532 1.64 452 1.53
525 1.77 504 1.62 667 2.01 681 1.88 673 2.08 501 1.70
585 1.97 578 1.86
687 2.31 622 2.00

Fig.1

Relationship between strand strength and twist ratio"

Fig.2

Test results of hairiness of strands over 3 mm"

Fig.3

Test results of abrasion resistance of strands"

[1] 韩祖耀. 股线结构的理论与应用[J]. 纺织学报, 1982,3(4):3-10.
HAN Zuyue. The theory and its application of the structure of ply yarn[J]. Journal of Textile Research, 1982,3(4):3-10.
[2] 宋均燕, 赵阳, 何小东, 等. 集聚纺股线捻系数与强伸性能的关系[J]. 棉纺织技术, 2017,45(10):16-19.
SONG Junyan, ZHAO Yang, HE Xiaodong, et al. Relationship between twist factor and strength & elongation of condensed spinning ply yarn[J]. Cotton Textile Technology, 2017,45(10):16-19.
[3] 侯秀良, 刘启国, 王善元. 羊绒及混纺纱线拉伸力学性能与捻度关系的研究[J]. 毛纺科技, 2001,29(6):38-41.
HOU Xiuliang, LIU Qiguo, WANG Shanyuan. Relationship between tensile properties and twist of cashmere yarns[J]. Wool Textile Journal, 2001,29(6):38-41.
[4] 郁崇文. 纺纱学[M].2版. 北京: 中国纺织出版社, 2015: 194-198.
YU Chongwen. Spinning science[M]. 2nd ed. Beijing: China Textile & Apparel Press, 2015: 194-198
[5] GOURKAR P, MALU U. Effect of twist direction of double yarn on tensile properties of yarns/fabrics[J]. Melliand International, 2017,23(3):146-148.
[6] NARKHEDKAR R N, KADOLE P V. Influence of twist direction on tensile properties of double yarns[J]. Textile Asia, 2013,44(10):34-36.
[7] 安降龙. 赛络纺复合成纱机理、纱线结构及其力学性能研究[D]. 上海:东华大学, 2010: 79-84.
AN Xianglong. Study on the mechanism structural and mechanical performance of sirospun composite yarn[D]. Shanghai: Donghua University, 2010: 79-84.
[8] 陶丽珍, 周锁林. 棉莱赛尔赛络菲尔纱的纺制与性能分析[J]. 棉纺织技术, 2015,43(10):30-33.
TAO Lizhen, ZHOU Suolin. Development and property study of cotton lyocell sirofil yarn[J]. Cotton Textile Technology, 2015,43(10):30-33.
[9] 上海纺织控股( 集团) 公司. 棉纺手册[M].3版. 北京: 中国纺织出版社, 2004: 629-631.
Shanghai Textile Holding Group Co., Ltd. Cotton spinning handbook[M]. 3rd ed. Beijing: China Textile & Apparel Press, 2004: 629-631.
[10] 于伟东. 纺织材料学[M]. 北京: 中国纺织出版社, 2006: 23-24.
YU Weidong. Textile material science[M]. Beijing: China Textile & Apparel Press, 2006: 23-24.
[11] 孙晶, 王瑞, 孙红玉, 等. 捻系数比对纯棉股线性能的影响[J]. 棉纺织技术, 2018,46(12):23-26.
SUN Jing, WANG Rui, SUN Hongyu, et al. Effect of twist multiplier ratio on pure cotton ply property[J]. Cotton Textile Technology, 2018,46(12):23-26.
[1] YIN Shiyong, BAO Jinsong, TANG Shixi, YANG Yun. Modeling method of cyber physical production system for ring spinning [J]. Journal of Textile Research, 2021, 42(02): 65-73.
[2] MA Junzhi, GE Hong, WANG Dong, FU Shaohai. Preparation and properties of sol-gel modified flame retardant viscose fiber [J]. Journal of Textile Research, 2021, 42(01): 10-15.
[3] LIU Xi, WANG Dong, ZHANG Liping, LI Min, FU Shaohai. Effect of low refractive resin on structure and properties of spun-dyed viscose fibers [J]. Journal of Textile Research, 2020, 41(07): 9-14.
[4] MA Junzhi, WANG Dong, FU Shaohai. Preparation and properties of flame-retardant viscose fiber/dithiopyrophosphate incorporated with graphene oxide [J]. Journal of Textile Research, 2020, 41(03): 15-19.
[5] ZHANG Tingting, XUE Yuan, HE Yudong, LIU Yuexing, ZHANG Guoqing. Construction of Kubelka-Munk double-constant color matching model for ring digital yarn color prediction [J]. Journal of Textile Research, 2020, 41(01): 50-55.
[6] ZHANG Tingting, XUE Yuan, XU Zhiwu, YU Jian, CHEN Lianguang. Color system construction of three-channel digital spinning mixed color yarn and performance analysis of colored yarn [J]. Journal of Textile Research, 2019, 40(09): 48-55.
[7] YIN Sili, YANG Yang, JIANG Wen, SHI Yexin, ZHOU Xiaohua, HUANG Jinhong. Preparation and optimization of carboxyl viscose fiber grafted with silkworm chrysalis peptide [J]. Journal of Textile Research, 2019, 40(08): 14-19.
[8] WU Jiao, YU Husheng, WAN Xingyun, TIAN Ping, LI Huimin, HOU Xiaoxin. Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers [J]. Journal of Textile Research, 2019, 40(07): 19-23.
[9] YIN Shiyong, BAO Jinsong, SUN Xuemin, WANG Jiacheng. Method of temperature close-loop precision control based on cyber-physical systems for intelligent workshop of ring spinning [J]. Journal of Textile Research, 2019, 40(02): 159-165.
[10] . Structure and performances of double channel digital ring spinning melange yarn [J]. Journal of Textile Research, 2018, 39(11): 27-32.
[11] . Adsorption mechanism between nano-gold and viscose fiber [J]. Journal of Textile Research, 2018, 39(09): 22-28.
[12] . Application and process optimization of false twist in ring spinning machine [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 27-31.
[13] . Reducing yarn hairiness by wetting in ring spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 108-112.
[14] . Color prediction of double channel digital ring spinning melange yarn based on Stearns - Noechel model [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 32-37.
[15] . Preparation and antibacterial and dyeing properties of chitosan grafted antibacterial viscose fiber  [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 9-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!