Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (05): 31-37.doi: 10.13475/j.fzxb.20200805707

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of expanded polytetrafluoroethylene membrane composites with high dust holding capacity for high efficiency air filtration

LIU Chaojun1,2, LIU Junjie1(), DING Yike2, MA Shaofeng2, ZHANG Xiuqin2, ZHANG Jianqing2   

  1. 1. Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin University, Tianjin 300072, China
    2. Zhejiang Goldensea Environment Technology Co., Ltd., Shaoxing, Zhejiang 311817, China
  • Received:2020-08-12 Revised:2021-02-05 Online:2021-05-15 Published:2021-05-20
  • Contact: LIU Junjie E-mail:jjliu@tju.edu.cn

Abstract:

In order to improve the dust holding capacity of expanded polytetrafluoroethylene (ePTFE) membrane, and expand the application of ePTFE membrane composite materials in the field of clean room purification, polypropylene (PP) melt blown filter material with different thickness, fiber diameter and electret treatment was used as dust holding layer for the preparation of ePTFE membrane composite. The dust holding performance and microstructure of the composite were analyzed. The results show that the dust holding capacity of the composites increases linearly with the increase of the dust layer thickness. When the dust layer thickness is 0.45 mm, the dust holding capacity of the composite reaches 6.37 g/m2, which is 266% higher than that of the ePTFE membrane. The dust holding capacity of the composite increases as the dust layer fiber diameter decreases. When the fiber diameter of the dust layer is 1.462 μm, the dust holding capacity of the composite increases to 7.96 g/m2, which is 357% higher than that of the ePTFE membrane. After electret treatment, when the fiber diameter of the dust layer is 3.611 μm, the dust holding capacity of the composite increases by 136% compared with that before electret treatment.

Key words: expanded polytetrafluoroethylene, glass fiber filter paper, polypropylene melt blown filter material, dust holding capacity, air filter

CLC Number: 

  • TB332

Tab.1

Performance parameters of ePTFE and glass fiber filter media"

材料 过滤效率/
%
过滤阻力/
Pa
厚度/
mm
面密度/
(g·m-2)
ePTFE膜 99.984 146.98 0.43 83.0
玻璃纤维滤纸 99.976 276.53 0.53 76.0

Fig.1

Structure diagram of composite material"

Tab.2

Performance parameters of raw materials"

材料
序号
样品厚度/
mm
面密度/
(g·m-2)
纤维直径/
μm
过滤阻力/
Pa
过滤效率/
%
1-1 0.43 83.0 146.98 99.984
1-2 0.53 76.0 276.53 99.976
2-1 0.15 9.2 2.297 10.58 13.877
2-2 0.21 15.1 2.297 14.52 17.668
2-3 0.31 21.6 2.297 20.00 25.574
2-4 0.45 28.8 2.297 31.23 36.475
3-1 0.46 28.8 1.462 42.83 51.157
3-2 0.45 28.8 2.297 31.23 36.475
3-3 0.45 29.8 2.875 22.43 24.103
3-4 0.46 29.8 3.611 15.13 15.173
3-5 0.47 27.8 5.552 5.60 5.772
4-1 0.43 28.8 1.462 41.35 99.998
4-2 0.42 28.8 2.297 35.80 99.988
4-3 0.43 29.8 2.875 23.13 99.848
4-4 0.43 29.8 3.611 15.33 98.443
4-5 0.44 27.8 5.552 6.75 89.530

Fig.2

Dust holding curves of ePTFE membrane and glass fiber filter paper"

Fig.3

SEM images of ePTFE membrane and glass fiber filter paper surface before and after dust holding (× 2 000). (a) ePTFE membrane; (b) Glass fiber filter paper; (c) ePTFE membrane dust; (d) Glass fiber filter paper dust"

Fig.4

Resistance growth rate curve of composite materials with different dust holding layer thickness."

Fig.5

Comparison of dust holding capacity of composite materials with different dust holding layer thicknesses"

Fig.6

SEM images of ePTFE membrane and dust holding layer surface after dust retention. (a) ePTFE membrane surface of A-2-1; (b) ePTFE membrane surface of A-2-4; (c) Surface of dust holding layer of A-2-1; (d) Surface of dust holding layer of A-2-4"

Fig.7

Resistance growth rate of composite materials with different dust holding layer fiber diameters"

Fig.8

Comparison of dust holding capacity of composite materials with different dust holding layer fiber diameters"

Fig.9

SEM images of ePTFE membrane and dust holding layer windward side and leeward side surface after dust retention. (a) ePTFE membrane surface of B-3-1; (b) Windward side surface of dust holding layer of B-3-1; (c) Leeward side surface of dust holding layer of B-3-1; (d) ePTFE membrane surface of B-3-5; (e) Windward side surface of dust holding layer of B-3-5; (f) Leeward side surface of dust holding layer of B-3-5"

Fig.10

Comparisons of dust holding capacity before and after electret treatment of composite materials with different dust holding layer fiber diameters"

Fig.11

SEM images of ePTFE membrane and dust holding windward side and leeward side after electret and dust retention. (a) ePTFE membrane surface of C-4-1; (b) Windward side surface of dust holding layer of C-4-1; (c) Leeward side surface of dust holding layer of C-4-1; (d) ePTFE membrane surface of C-4-5; (e) Windward side surface of dust holding layer of C-4-5; (f) Leeward side surface of dust holding layer of C-4-5"

[1] 杨春雪, 阚海东, 陈仁杰. 我国大气细颗粒物水平、成分、来源及污染特征[J]. 环境与健康杂志, 2011,28(8):735-738.
YANG Chunxue, KAN Haidong, CHEN Renjie. Research on level, composition, source and pollution characteristics of ambient fine particles in China[J]. Journal of Encironment Health, 2011,28(8):735-738.
[2] PUI D Y H, CHEN S C, ZUO Z. PM2.5 in China: measurements, sources, visibility and health effects, and mitigation[J]. Particuology, 2014,13:2-26.
[3] 刘英军. 电子工业厂房节能分析与研究[D]. 成都:西华大学, 2012: 1-6.
LIU Yingjun. Energy-saving analysis and study of the electronics industry[D]. Chengdu:Xihua University, 2012: 1-6.
[4] 章忠飞, 翟传明, 李晨, 等. 电子工业洁净室的洁净度关键影响因素及解决方案探讨[J]. 智能建筑与智慧城市, 2019(2):41-43.
ZHANG Zhongfei, ZHAI Chuanming, LI Chen, et al. Discussion on key influencing factors and solutions for the cleanliness of clean rooms in the electronics industry[J]. Intelligent Building & City Information, 2019(2):41-43.
[5] 刘炜, 刘俊杰, 马群. 非单向流洁净室洁净度的理论计算与实验研究[J]. 建筑科学, 2010,26(10):76-83.
LIU Wei, LIU Junjie, MA Qun. Theoretical calculation and experimental study on cleanliness of non-unidirectional flow clean room[J]. Building Science, 2010,26(10):76-83.
[6] BIRCHSTER C A, KAHN J E, FOWLER A B. Air purification manual[M]. Beijing: Atomic Energy Press, 1981: 46.
[7] TANG M, HU J, LIANG Y, et al. Pressure drop, penetration and quality factor of filter paper containing nanofibers[J]. Textile Research Journal, 2017,87(4):498-508.
doi: 10.1177/0040517516631318
[8] 郝新敏, 杨元, 黄斌香. 聚四氟乙烯微孔膜及纤维[M]. 北京: 化学工业出版社, 2011: 3-21.
HE Xinmin, YANG Yuan, HUANG Binxiang. PTFE micropore and its fiber[M]. Beijing: Chemical Industry Press, 2011: 3-21.
[9] 刘鸿洋, 林忠平, 张万毅, 等. 基于PTFE高效滤料结构的容尘性能研究[J]. 建筑热能通风空调, 2016,35(4):35-37.
LIU Hongxiang, LIN Zhongping, ZHANG Wanyi, et al. A clogging capacity study of PTFE HEPA medium structure[J]. Building Energy & Environment, 2016,35(4):35-37.
[10] LEUNG W F, HUNG C H. Investigation on pressure drop evolution of fibrous filter operating in aerodynamic slip regime under continuous loading of sub-micron aerosols[J]. Separation and Purification Technology, 2008,63(3):691-700.
doi: 10.1016/j.seppur.2008.07.015
[11] LEUNG W F, HUNG C H, YUEN P T. Experimental investigation on continuous filtration of sub-micron aerosol by filter composed of dual-layers including a nanofiber layer[J]. Aerosol Science and Technology, 2009,43(12):1174-1183.
doi: 10.1080/02786820903261086
[1] . Preparation and filtration performance of polyacrylonitrile graded composite nanofiber membrane [J]. Journal of Textile Research, 2018, 39(09): 1-7.
[2] . Air filtration performance of polyether sulfone nonwoven composite membranes [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 55-62.
[3] . Preparation and properties of electrospun polyacrylonitrile nanofiber coated window screen [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 14-18.
[4] . Properties and new product developement of automobile air filter filtration material [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 58-66.
[5] CHEN Gangjin;XIAO Huiming;WANG Yaoxiang. Charge characteristics and stability of non-woven polypropylene fabric electrets [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(9): 125-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!