Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (06): 106-113.doi: 10.13475/j.fzxb.20200700708

• Textile Engineering • Previous Articles     Next Articles

Fuzzy comprehensive evaluation of fabric gloss based on spectral imaging technology

ZHANG Jianxin(), HUANG Gang, HU Xudong   

  1. Faculty of Mechanical Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-07-03 Revised:2021-03-03 Online:2021-06-15 Published:2021-06-28

Abstract:

In order to explore objective evaluation of fabric gloss performance to guide visual design in textile mills, an objective evaluation method of fabric gloss performance based on spectral imaging technology was proposed. The spectral imaging system was used to collect the multi-band spectral reflectance information of the fabric image, and the spectral information in the visible light band for chromaticity conversion was selected to obtain the chromaticity space L, a, and b values. Based on the direction difference theory, four evaluation characteristics were constructed to describe the properties of different aspects of fabric gloss, a fuzzy comprehensive evaluation model was established to evaluate fabric gloss, and the evaluation results obtained from using multi-weight determination methods were analyzed. Through subjective and objective verifications, the experimental results show that the method has good consistency with the subjective evaluation results and FZ/T 01097—2006 "Fabric Gloss Test Method," indicating that the new method is feasible and can be effectively applied to evaluate fabric gloss performance.

Key words: fabric gloss, spectral imaging system, reflectance information, multi-weight determination method, fuzzy comprehensive evaluation model

CLC Number: 

  • TS101.8

Tab.1

Subjective evaluation level of fabric gloss"

光泽等级/级 描述
1.0 暗哑的,暗淡无光
1.5 无光泽的,颇暗淡
2.0 缺乏光泽的,较为暗淡
2.5 低光泽的,稍暗淡
3.0 扩散的,既不暗淡也不柔和
3.5 有光泽的,光泽稍柔和
4.0 光亮的,光泽较柔和
4.5 高光泽的,光泽颇柔和
5.0 闪亮的,视感明亮

Fig.1

Hyper spectral imaging system"

Fig.2

Flow chart of spectral image acquisition and calibration"

Tab.2

Fabric sample parameters"

试样
编号
试样
成分
组织 密度/
(根·(10 cm)-1)
颜色 纱线线密度/
tex
经向 纬向 经纱 纬纱
1 320 220 黄色 11.7 11.7
2 320 260 紫红 11.7 11.7
3 260 220 墨绿 11.7 11.7
4 纯棉 平纹 360 220 深蓝 9.7 9.7
5 320 240 米黄 9.7 9.7
6 180 130 咖啡 7.3 7.3
7 400 220 浅青 7.3 7.3
8 360 240 淡蓝 11.7 11.7

Tab.3

"

试样编号 评价人员1 评价人员2 评价人员3
1 3.2 3.0 3.2
2 1.5 1.3 1.0
3 1.5 1.3 1.8
4 1.0 1.2 1.0
5 3.8 4.2 3.7
6 1.8 1.7 2.2
7 4.0 4.2 3.7
8 4.5 4.5 4.2

Tab.4

Evaluation characteristic data"

试样编号 Lq Ld Lu Cu
1 76.0 4.73 7.5×10-3 8.6×10-3
2 30.5 4.93 4.7×10-3 5.9×10-3
3 44.1 4.47 6.1×10-3 5.2×10-3
4 31.5 2.88 4.4×10-3 5.6×10-3
5 82.9 5.81 8.5×10-3 6.5×10-3
6 52.0 4.47 5.9×10-3 5.0×10-4
7 74.7 6.18 9.4×10-3 6.6×10-3
8 76.5 7.39 9.2×10-3 6.2×10-3

Tab.5

Weight determined by different methods"

权值确定方法 w1 w2 w3 w4
COV 0.34 0.24 0.26 0.14
APH 0.26 0.26 0.27 0.21
EEM 0.40 0.30 0.20 0.10
EWM 0.28 0.16 0.25 0.31

Tab.6

Evaluation results of fabric gloss"

试样编号 COV APH EEM EMW
1 3.51 3.40 3.22 4.12
2 0.42 0.52 0.41 0.53
3 0.94 0.81 0.93 0.84
4 0.81 0.73 0.74 0.68
5 4.14 3.69 4.02 3.84
6 1.29 1.10 1.24 1.22
7 4.33 4.12 4.13 4.04
8 4.77 4.53 4.81 4.23

Tab.7

"

试样编号 对比度光泽等级
1 1.90
2 0.45
3 0.80
4 0.61
5 2.41
6 0.90
7 2.13
8 2.39

Fig.3

Result comparison of fuzzy evaluation and subjective evaluation"

Fig.4

Result comparison of fuzzy evaluation and contrast experiment"

Tab.8

Fabric sample parameters"

试样
编号
试样
成分
组织 密度/
(根·(10 cm)-1)
颜色 纱线线密度/
tex
经向 纬向 经纱 纬纱
1 纯棉 平纹 320 220 黄色 11.7 11.7
2 纯棉 平纹 320 260 紫红 11.7 11.7
3 纯棉 平纹 360 220 深蓝 9.7 9.7
4 纯棉 平纹 180 130 咖啡 7.3 7.3
5 纯棉 斜纹 400 314 绿色 19.4 19.4
6 纯棉 斜纹 344 334 米黄 29.2 29.2
7 纯棉 斜纹 456 302 蓝色 14.6 14.6
8 纯棉 斜纹 448 328 灰色 13.0 13.0
9 纯棉 缎纹 440 280 天青 12.6 12.6
10 纯棉 缎纹 384 288 咖绿 12.5 12.5
11 纯棉 缎纹 440 304 白色 13.3 8.3
12 纯棉 缎纹 378 246 紫色 27.8 27.8

Tab.9

"

试样编号 x y y' yc y'c
1 3.51 1.90 1.87 3.13 3.38
2 0.42 0.45 0.48 1.26 1.12
3 0.81 0.61 0.64 1.13 1.40
4 1.29 0.90 0.87 1.90 1.77
5 2.81 1.58 1.56 2.66 2.87
6 4.13 2.12 2.15 3.96 3.84
7 1.47 0.98 0.96 1.80 1.89
8 2.09 1.20 1.24 2.26 2.35
9 3.04 1.60 1.66 2.86 3.04
10 1.71 1.10 1.06 2.26 2.06
11 4.63 2.50 2.38 4.13 4.20
12 1.22 0.87 0.84 1.76 1.70
[1] 申悦, 谢莉青. 织物光泽技术研究现状和展望[J]. 纺织科技进展, 2017, 9(3):5-9.
SHEN Yue, XIE Liqing. Research status and prospect of science & fabric gloss technology[J]. Progress in Textile Technology, 2017, 9(3):5-9.
[2] 李汝勤, 宋钧才. 纤维和纺织品测试技术[M]. 3版. 上海: 东华大学出版社, 2009:29-36.
LI Ruqin, SONG Juncai. Fiber and textile testing tech-nology[M]. 3rd ed. Shanghai: Donghua University Press, 2009:29-36.
[3] MEHDI H, DARIUSH S, MOHAMMAD S. A new method for measuring luster index based on image processing[J]. Textile Research Journal, 2010, 80(8):65-69.
[4] 申悦. 织物光泽的计算机视觉评价研究[D]. 青岛: 青岛大学, 2018:12-91.
SHEN Yue. Research on computer vision evaluation of fabric gloss[D]. Qingdao: Qingdao University, 2018:12-91.
[5] 李静. 织物表面纹理特征与光泽对主观颜色的影响[D]. 杭州: 浙江理工大学, 2013:17-23.
LI Jing. Influence of fabric surface texture characteristic and gloss on subjective color[D]. Hangzhou: Zhejiang Sci-Tech University, 2013:17-23.
[6] 黄敏, 王丽丽, 刘浩学, 等. 不同光泽印刷样品的微小色差评价研究[J]. 光学学报, 2010, 30(6):1851-1856.
HUANG Min, WANG Lili, LIU Haoxue, et al. Study on color difference evaluation using printed samples with different glossy[J]. Acta Optica Sinica, 2010, 30(6):1851-1856.
doi: 10.3788/AOS
[7] GUNDOLA M, KISTAMAH N. Development of a fabric luster scale[J]. University of Mauritius Research Journal, 2007, 13(1):155-162.
[8] 刘哲. 基于图像分析的织物外观质量综合评价[J]. 纺织学报, 2012, 33(11):62-66.
LIU Zhe. Comprehensive evaluation of fabric appearance quality based on image analysis[J]. Journal of Textile Reasearch, 2012, 33(11):62-66.
[9] 裘柯槟, 陈维国, 周华. 用光谱成像技术与分光光度法测量织物颜色的比较分析[J]. 纺织学报, 2020, 41(11):74-77.
QIU Kebing, CHEN Weiguo, ZHOU Hua. Comparison of spectral and spectrophotometry in fabric color measurement[J]. Journal of Textile Reasearch, 2020, 41(11):74-77.
[10] 王鸿博, 高卫东. 织物质量的模糊综合评判[J]. 江南大学学报(自然科学版), 2002, 1(3):282-284.
WANG Hongbo, GAO Weidong. Fuzzy comprehensive evaluation of fabric quality[J]. Journal of Jiangnan University(Natural Science Edition), 2002, 1(3):282-284.
[11] 杨静. 改进的模糊综合评价法在水质评价中的应用[D]. 重庆: 重庆大学, 2014:27-36.
YANG Jing. Application of improved fuzzy comprehensive evaluation method in water quality evaluation[D]. Chongqing: Chongqing University, 2014:27-36.
[12] 朱怀. 基于APH-熵权法的渡槽健康状态模糊综合评价研究[D]. 长沙: 湖南大学, 2014:26-32.
ZHU Huai. Reasearch on fuzzy comprehensive evaluation of health state of aqueduct based on APH-entropy weight method[D]. Chanshan: Hunan University, 2014:26-32.
[13] 楚鑫鑫, 肖红, 范杰. 织物凉感等级的主客观评价及确定[J]. 纺织学报, 2019, 40(2):106-113.
CHU Xinxin, XIAO Hong, FAN Jie. Using fuzzy comprehensive evaluation method to classify fabrics for coolness level[J]. Journal of Textile Research, 2019, 40(2):106-113.
[14] 吴礼斌, 李柏年, 张孔生. MATLAB数据分析方法[M]. 2版. 北京: 机械工业出版社, 2017:63-89.
WU Libin, LI Bainian, ZHANG Kongsheng. MATLAB data analysis method[M]. 2nd ed. Beijing: Mechanical Industry Press, 2017:63-89.
[1] ZHANG Siyu, YU Li, JIA He, LIU Xin. Free form deformation modeling method and inflation mechanism of folded canopy fabrics [J]. Journal of Textile Research, 2021, 42(07): 108-114.
[2] LUO Xiaolei, LI Ziyan, MA Ya'nan, LIU Lin, KRUCINSKA Izabella, YAO Juming. Progress in ecological flame retardant technology for textiles [J]. Journal of Textile Research, 2021, 42(05): 193-202.
[3] WANG Lu, HAN Xue, LOU Lin, HE Linghua, ZHOU Xiaohong. Development of electric-heating protective gloves and ergonomic experiments under extreme cold environment [J]. Journal of Textile Research, 2021, 42(05): 150-154.
[4] YIN Shiyong, BAO Jinsong, TANG Shixi, YANG Yun. Modeling method of cyber physical production system for ring spinning [J]. Journal of Textile Research, 2021, 42(02): 65-73.
[5] SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112.
[6] SHENG Mingfei, WANG Wanning, ZHANG Liping, FU Shaohai. Preparation and properties of continuously produced electric-responsive liquid crystal fibers [J]. Journal of Textile Research, 2021, 42(02): 27-33.
[7] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[8] HU Xiaorui, SUN Fengxin, XIAO Caiqin, GAO Weidong. Characterization of wrinkle recovery of fabrics based on in-situ mechanical testing [J]. Journal of Textile Research, 2020, 41(10): 41-45.
[9] SHENG Mingfei, ZHANG Liping, FU Shaohai. Preparation and property of dye-doped liquid crystal microcapsules for electro-stimulated responsive smart textiles [J]. Journal of Textile Research, 2020, 41(08): 63-68.
[10] XIAO Zhitao, GUO Yongmin, GENG Lei, WU Jun, ZHANG Fang, WANG Wen, LIU Yanbei. Internal defect detection method for thin test pieces of woven laminated composites based on ultrasonic phased array [J]. Journal of Textile Research, 2019, 40(11): 81-87.
[11] JIA Gaopeng, SONG Xiaohong, LI Ying, LIU Xiaodan, PAN Xueru. Current response in stretching process of Cu-Ni metal-coated woven fabric [J]. Journal of Textile Research, 2019, 40(10): 68-72.
[12] ZOU Lihua, XU Zhenzhen, SUN Yanyan, WANG Tairan, QIU Yiping. Influence of graphene oxide/polyaniline functional film on electromagnetic shielding property of cotton fabrics [J]. Journal of Textile Research, 2019, 40(08): 109-116.
[13] LIU Qiannan, ZHANG Han, LIU Xinjin, SU Xuzhong. Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS [J]. Journal of Textile Research, 2019, 40(04): 44-50.
[14] YANG Jing, LIU Yanjun. Preparation and properties of graphene-knitted electrode materials [J]. Journal of Textile Research, 2019, 40(03): 90-95.
[15] . ABAQUS based finite element analysis of heat transfer through woven fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 37-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!