Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (07): 108-114.doi: 10.13475/j.fzxb.20200704107

• Textile Engineering • Previous Articles     Next Articles

Free form deformation modeling method and inflation mechanism of folded canopy fabrics

ZHANG Siyu1, YU Li1(), JIA He1,2, LIU Xin1   

  1. 1. Key Laboratory of Aircraft Environment Control and Life Support, MIIT, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
    2. Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • Received:2020-07-17 Revised:2021-03-10 Online:2021-07-15 Published:2021-07-22
  • Contact: YU Li E-mail:yuli_happy@163.com

Abstract:

Folded flexible canopy fabrics of ram-air parachutes modeling is a key problem in the interaction calculation during inflation process. According to physical folding characteristics, a modeling method of folded canopy fabrics was proposed based on free form deformation. The wing surface deformation was achieved by moving control nodes with direct constraint method of free form deformation. The spanwise folding was obtained by coordinate matrix transformation. In order to modify the geometric errors, the initial stress method was introduced to make the folded model with mechanical characteristics. The folded canopy fabrics model of a certain ram-air parachute was established using this method, and the fluid-structure interaction calculation was carried out based on the arbitrary Lagrange-Euler method during inflation process. The three-dimensional shape, stress and unsteady flow field distribution were obtained. The corresponding calculation and airdrop experiment verified the rationality and feasibility of this method.

Key words: inflatable flexible fabric, folded canopy fabric, ram-air parachutes, free form deformation, inflation mechanism, fluid-structure interaction, fold modeling

CLC Number: 

  • TS101.8

Tab.1

Parameters of canopy fabrics and cord lines"

名称 厚度/m 横截面积/m2 弹性模量/Pa 密度/ (kg·m-3)
伞衣 0.035 4.3×108 533.77
伞绳 9.0×10-6 9.7×1010 462.00

Fig.1

General framework"

Fig.2

Deformed area and control nodes"

Fig.3

Section of control nodes"

Fig.4

Principle of initial stress modification"

Fig.5

Actual folded canopy fabrics"

Fig.6

Initial geometric model of canopy"

Fig.7

Control nodes and constraints of upper (a) and lower (b) wings surface"

Fig.8

Projection distortion of upper (a) and lower (b) wings surface"

Fig.9

Deformed cells"

Fig.10

Spanwise folded canopy fabrics"

Fig.11

Variation of opening load"

Fig.12

Evolution of structure and flow field during inflation. (a) Velocity vector contour; (b) Pressure contour"

[1] MACHIN R A, IACOMINI C S, CERIMELE C J, et al. Flight testing the parachute system for the space station crew return vehicle[J]. Journal of Aircraft, 2001, 38(5):786-799.
doi: 10.2514/2.2854
[2] 史献林, 余莉. 翼伞空中回收系统的研究及其进展[J]. 航天返回与遥感, 2008, 29(1):1-5,10.
SHI Xianlin, YU Li. The study and development of the parafoil mid-air retrieval system[J]. Spacecraft Recovery & Remote Sensing, 2008, 29(1):1-5,10.
[3] BENNETT T, FOX R. Design, development & flight testing of the NASA X-38 7500 ft2 parafoil recovery system[C] //Proceedings of the 17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA Press, 2003: 2003-2107.
[4] 夏刚, 程文科, 秦子增. 航天器回收中几种主伞失效案例介绍[J]. 航天返回与遥感, 2002, 23(4):4-8.
XIA Gang, CHENG Wenke, QIN Zizeng. Case study of main parachute malfunction in aerospace recovery[J]. Spacecraft Recovery & Remote Sensing, 2002, 23(4):4-8.
[5] YU L, CHENG H, ZHAN Y N, et al. Study of parachute inflation process using fluid-structure interaction method[J]. Chinese Journal of Aeronautics, 2014, 27(2):272-279.
doi: 10.1016/j.cja.2014.02.021
[6] KIM Y, PESKIN C S. 3-D parachute simulation by the im-mersed boundary method[J]. Computers and Fluid, 2009, 38(6):1080-1090.
doi: 10.1016/j.compfluid.2008.11.002
[7] 高兴龙, 张青斌, 高庆玉, 等. 有限质量降落伞充气动力学数值模拟[J]. 国防科技大学学报, 2016, 38(4):185-190.
GAO Xinglong, ZHANG Qingbin, GAO Qingyu, et al. Numerical simulation on finite mass inflation dynamics of parachute[J]. Journal of National University of Defense Technology, 2016, 38(4):185-190.
[8] CHEN M, TANG K. A fully geometric approach for develop-able cloth deformation simulation[J]. The Visual Computer, 2010, 26(6/8):853-863.
doi: 10.1007/s00371-010-0467-5
[9] 潘博, 钟跃崎. 基于二维图像的三维服装重建[J]. 纺织学报, 2020, 41(4):123-128.
PAN Bo, ZHONG Yueqi. Image-based three-dimensional garment reconstruction[J]. Journal of Textile Research, 2020, 41(4):123-128.
[10] CARIGNAN M, YANG Y, THALMANN N M, et al. Dressing ani-mated synthetic actors with complex deformable clothes[C] //Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1992: 99-104.
[11] GUAN P, REISS L, HIRSHBERG D A, et al. Drape: dressing any person[J]. ACM Transactions on Graphics, 2012. DOI: 10.1145/20185520.20185521.
[12] FENG W W, YU Y Z, KIM B U. A deformation transformer for real-time cloth animation[J]. ACM Transactions on Graphics, 2010. DOI: 10.1145/1778765.1778845.
[13] 毛天露, 夏时洪, 朱小龙, 等. 一种基于混合模型的实时虚拟人服装动画方法[J]. 计算机研究与发展, 2010, 47(1):8-15.
MAO Tianlu, XIA Shihong, ZHU Xiaolong, et al. Real-time garment animation based on mixed model[J]. Journal of Computer Research and Development, 2010, 47(1):8-15.
[14] SALAMA M, KUO C P, LOU M. Simulation of deployment dynamics of inflatable structures[J]. AIAA Journal, 2000, 38(12):2277-2283.
doi: 10.2514/2.896
[15] 程涵, 余莉, 李少腾, 等. 折叠降落伞展开过程研究[J]. 航天返回与遥感, 2012, 33(2):1-6.
CHENG Han, YU Li, LI Shaoteng, et al. A study on the opening process of folded parachute[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(2):1-6.
[16] 程涵, 余莉, 张鑫华, 等. 基于IMM修正的降落伞折叠建模方法[J]. 计算机辅助设计与图形学学报, 2013, 25(5):751-757.
CHENG Han, YU Li, ZHANG Xinhua, et al. Folded parachute modeling method based on IMM[J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(5):751-757.
[17] GAO X, ZHANG Q, TANG Q . Fluid-structure interaction and flight dynamics analysis of parachute-payload system during uncontrolled airdrop process[J]. Journal of Aerospace Engineering, 2017, 232(13):2499-2512.
[18] 展亚南, 余莉, 杨雪, 等. 空间折叠充气管分段控制展开数值仿真研究[J]. 计算机仿真, 2015, 32(9):99-103,119.
ZHAN Ya'nan, YU Li, YANG Xue, et al. Numerical simulation research on segment controlled deployment of folded space inflatable tube[J]. Computer Simulation, 2015, 32(9):99-103,119.
[19] LIU J J, LONG J, LIANG K, et al. Reverse modeling of complicated folded fabric[J]. Journal of Industrial Textiles, 2016, 46(2):417-435.
doi: 10.1177/1528083715584140
[20] LEE C K, BUCKLEY J E. New technique for parafoil inflation control[J]. Journal of Aircraft, 2000, 37(3):479-483.
doi: 10.2514/2.2622
[21] LIU G Q, XIE G H, CUI Z S. A new approach for folding process modeling of passage airbag[J]. Applied Mechanics and Materials, 2014,635-637:564-567.
[22] SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[J]. ACM SIGGRAPH Computer Graphics, 1986, 20(4):151-160.
doi: 10.1145/15886.15903
[23] ZHAO X S, YU L, YANG X, et al. Segmentation mapping and folding method of surfaces of revolution and its applications[J]. Engineering Computations, 2019, 36(4):1305-1322.
doi: 10.1108/EC-06-2018-0271
[24] SOULI M, OUAHSINE A, LEWIN L. ALE formulation for fluid-structure interaction problems[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(5/7):659-675.
doi: 10.1016/S0045-7825(99)00432-6
[25] 张思字, 余莉, 刘鑫. 翼伞充气过程的流固耦合方法数值仿真[J]. 北京航空航天大学学报, 2020, 46(6):1108-1115.
ZHANG Siyu, YU Li, LIU Xin. Numerical simulation of parafoil inflation process based on fluid-structure interaction method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6):1108-1115.
[1] LIU Yisheng, XU Guangyi. Effect of incident angle of oblique airflow on weft yarn tucking [J]. Journal of Textile Research, 2020, 41(07): 72-77.
[2] GUO Zhen, LI Xinrong, BU Zhaoning, YUAN Longchao. Three-dimensional numerical simulation of fiber movement in nozzle of murata vortex spinning [J]. Journal of Textile Research, 2019, 40(05): 131-135.
[3] . Movement rule of yarn in incongruous jet flow with pure pneumatic tucker [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 122-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!