Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (07): 82-88.doi: 10.13475/j.fzxb.20201007007

• Textile Engineering • Previous Articles     Next Articles

Preparation and properties of puncture-resistant fabrics made from polyester and aramid or ultrahigh molecular weight polyethylene compound yarns

LI Fengyan(), YE Tianyu, ZHAN Xiaoqing, ZHAO Jian, LI Danyang, WANG Rui   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2020-10-29 Revised:2021-03-08 Online:2021-07-15 Published:2021-07-22

Abstract:

In order to reduce the costs and improve comfortability of puncture-resistant fabrics made from high performance fibers, the compound yarn with aramid or ultrahigh molecular weight polyethylene fiber (UHMWPE) and polyester were prepared and used as the yarn materials of puncture-resistant fabrics. The influence of compound yarn, fabric density and overlying layers on static puncture properties, air and moisture permeability of fabrics were measured and analyzed. The results show that the puncture force increases with the increase in fabric areal density, and the addition of polyester fibers either maintain or improve the puncture resistance of the fabrics. By increasing the fabric layers, the maximal load improvement is close to 536%. In addition, the puncture load could be achieved by increasing fiber content with small fabric layers.The addition of compound yarn has no influence on air and moisture permeability of the fabrics. However, the air permeability are significantly decreased with overlying layers to 64.82% with the increase of fabric warp and weft densities.

Key words: puncture-resistant fabric, compound yarn, static puncture, aramid, ultrahigh molecular weight polyethylene fiber, polyester, high performance fiber

CLC Number: 

  • TS156

Tab.1

Fabric specification"

样品编号 经纱原料 纬纱原料 面密度/(g·m-2) 织物厚度/mm 织物密度/(根·(10 cm)-1) 纱线线密度
经向 纬向 经纱 纬纱
Z-1 2# 2# 388.15 0.76 170 130 111 tex(667 f)+
8.33 tex(72 f)
111 tex(667 f)+
8.33 tex(72 f)
Z-2 393.91 0.88 170 130
Z-3 364.95 0.82 170 110
Z-4 K 351.34 0.70 170 100 111 tex(667 f)
Z-5 U 6# 105.77 0.25 200 160 22.22 tex(198 f) 22.22 tex(198 f)+
8.33 tex(72 f)
Z-6 120.02 0.24 200 200
Z-7 133.65 0.26 200 240
Z-8 6# 6# 119.97 0.35 240 160 22.22 tex(198 f)+
8.33 tex(72 f)
22.22 tex(198 f)+
8.33 tex(72 f)
Z-9 154.27 0.37 240 200
Z-10 162.41 0.34 240 240
Z-11 148.76 0.36 240 240
Z-12 171.65 0.45 240 280

Tab.2

Fabric specification of commercial fabrics"

样品编号 经纱原料 纬纱原料 面密度/(g·m-2) 织物厚度/mm 织物密度/(根·(10 cm)-1) 纱线线密度
经向 纬向 经纱 纬纱
Y-1 K K 200 0.283 54 54 166.67 tex(1 000 f) 166.67 tex(1 000 f)
Y-2 220 0.316 100 100 111.11 tex(667 f) 111.11 tex(667 f)
Y-3 240 0.317 70 70 166.67 tex(1 000 f) 166.67 tex(1 000 f)
Y-4 400 0.574 60 54 333.33 tex(1 300 f) 333.33 tex(1 300 f)
Y-5 U U 90 0.180 200 180 22.22 tex(198 f) 22.22 tex(198 f)
Y-6 130 0.329 150 150 44.44 tex(240 f) 44.44 tex(240 f)
Y-7 180 0.405 220 240
Y-8 240 0.620 90 90 133.33 tex(768 f) 133.33 tex(768 f)

Fig.1

Instrument of measurement on puncture resistance. (a) Cylindrical clipper; (b) Knife with single edge"

Fig.2

Stress-strain curves of compound yarn. (a) PET/aramid(1#-5#); (b) PET/UHMWPE(6#-10#);(c) PET/UHMWPE(11#-15#) "

Tab.3

Puncture resistance of single-layer fabric"

样品编号 高性能纤维根数/
(根·m-2)
纤维总根数/
(根·m-2)
载荷/N
Y-1 108 000 108 000 33.597
Y-2 133 400 133 400 44.394
Y-3 140 000 140 000 66.480
Y-4 148 200 148 200 95.267
Y-5 75 240 75 240 20.753
Y-6 72 000 72 000 24.341
Y-7 110 400 110 400 40.799
Y-8 138 240 138 240 59.761
Z-1 115 284 221 700 119.427
Z-2 100 504 206 920 112.418
Z-3 115 284 221 700 165.119
Z-4 139 122 192 330 50.325
Z-5 63 359 828 00 20.023
Z-6 74 159 93 600 22.601
Z-7 84 961 104 400 24.196
Z-8 69 120 108 000 23.791
Z-9 83 160 118 800 28.151
Z-10 87 182 129 600 30.118
Z-11 90 720 129 600 27.044
Z-12 101 523 140 400 30.511

Tab.4

Effect of stacking layers on puncture resistance of fabrics"

样品
编号
堆叠
层数
高性能纤维根数/
(根·m-2)
纤维总根数/
(根·m-2)
载荷/N
Y-5 1 108 000 108 000 20.753
2 150 480 150 480 38.352
3 225 720 225 720 65.854
4 300 960 300 960 90.843
Y-6 1 72 000 72 000 24.341
2 144 000 144 000 47.791
3 216 000 216 000 76.222
4 288 000 288 000 99.749
Y-7 1 110 400 110 400 40.799
2 220 800 220 800 95.359
3 331 200 331 200 170.436
4 441 600 441 600 173.404
Y-8 1 138 240 138 240 59.761
2 276 480 276 480 127.175
3 414 720 414 720 274.523
4 552 960 552 960 295.710
Z-5 1 63 359 82 800 20.023
2 126 718 165 600 35.345
3 190 077 248 400 56.139
4 253 436 331 200 61.908
Z-6 1 74 159 93 600 22.601
2 148 318 187 200 52.491
3 222 477 280 800 72.993
4 296 636 374 400 110.396
Z-7 1 84 961 104 400 24.196
2 169 922 208 800 65.473
3 254 883 313 200 92.010
4 339 844 417 600 172.197

Fig.3

Puncture morphology of single-layer fabrics. (a) PET/UHMWPE; (b) PET/aramid"

Fig.4

Puncture morphology of 2-layer (a), 3-layer (b) and 4-layer (c) fabrics"

Tab.5

Air permeability of fabrics"

样品编号 堆叠层数 透气率/(mm·s-1)
Y-5 1 36.22
2 23.11
4 17.12
Z-5 1 44.35
2 31.88
4 26.97
Z-6 1 37.37
2 27.39
4 18.94
Z-7 1 29.99
2 17.67
4 10.55

Tab.6

Moisture permeability of fabrics"

样品编号 透湿率/(g·m-2·h-1)
Y-5 124.42
Z-5 124.20
Z-6 119.05
Z-7 106.57
[1] JI Tingchao, QIAN Xinming, YUAN Mengqi, et al. Experimental study of thermal comfort on stab resistant body armor[J]. Springer Plus, 2016, 5(1):1168-1182.
doi: 10.1186/s40064-016-2432-x
[2] 李宁, 宋广礼, 刘梁森, 等. 芳纶针织物的防刺性能[J]. 纺织学报, 2014, 35(12):31-35,56.
LI Ning, SONG Guangli, LIU Liangsen, et al. Stabbing-resistance performance of aramid fabric[J]. Journal of Textile Research, 2014, 35(12):31-35,56.
[3] 艾青松, 虎龙, 吴中伟, 等. 芳纶无纬布防刺性能初探[J]. 玻璃钢/复合材料, 2019(5):106-109.
AI Qingsong, HU Long, WU Zhongwei, et al. Study on the stab performance of aramid UD cloth[J]. Fiber Reinforced Plastics/Composites, 2019(5):106-109.
[4] MILLAN M R, DIAZ A A, RUIZ A J, et al. Experimental analysis for stabbing resistance of different aramid composite architectures[J]. Composite Structures, 2019, 208:525-534.
doi: 10.1016/j.compstruct.2018.10.042
[5] LI Changsheng, HUANG Xiancong, LI Yan, et al. Stab resistance of UHMWPE fiber composites impregnated with thermoplastics[J]. Polymers for Advanced Technologies, 2014, 25(9):1014-1019.
doi: 10.1002/pat.3344
[6] YANG Shasha, DU Zhaoqun. Analysis of stabbing performance of UHMWPE fabric at different angles[J]. Advanced Materials Research, 2013, 821:223-225.
[7] 张恒, 甄琪, 钱晓明, 等. 仿生树型超高分子量聚乙烯柔性防刺复合材料制备及其透湿性能[J]. 纺织学报, 2018, 39(4):63-68.
ZHANG Heng, ZHEN Qi, QIAN Xiaoming, et al. Preparation and moisture permeability of ultra-high molecular weight polyethylene flexible stab-resistant composite with dendritic structure[J]. Journal of Textile Research, 2018, 39(4):63-68.
[8] WEI Rubin. Enhancing stab resistance of thermoset-aramid composite fabrics by coating with SiC particles[J]. Journal of Industrial Textiles, 2019, 48(7):1228-1241.
doi: 10.1177/1528083718760804
[9] 王新厚, 张琳梅, 孙晓霞. 柔性防刺聚酯/碳化硅织物的制备及其防刺性能[J]. 纺织学报, 2019, 40(6):172-176,182.
WANG Xinhou, ZHANG Linmei, ZHANG Xiaoxia. Preparation of flexible puncture-proof polyester/SiC and puncture-proof property[J]. Journal of Textile Research, 2019, 40(6):172-176,182.
[10] MILLANA R M, DIAZ A A, RUIZB A J. Experimental analysis for stabbing resistance of different aramid composite architectures[J]. Composite Structures, 2019, 208:525-534.
doi: 10.1016/j.compstruct.2018.10.042
[11] LEE Chohsun, LOU Chingwen, CHEN Jinmao, et al. Process technology and performance evaluation of nylon 6/PU stab resistance fabric matrix[J]. Key Engineering Materials, 2010, 443:631-636.
doi: 10.4028/www.scientific.net/KEM.443
[12] LIU X, HUO J, LI T, et al. Effect of plasma-treated silica on the stab resistance of shear thickening fluid impregnated aramid fabrics[J]. Materials Reports, 2019, 33(8):2799-2803.
[13] LI Tingting, DAI Wenna, WU Liwei, et al. Effects of STF and fiber characteristics on quasi-static stab resistant properties of shear thickening fluid (STF)-impregnated UHMWPE/Kevlar composite fabrics[J]. Fibers and Polymers, 2019, 20(2):328-336.
doi: 10.1007/s12221-019-8446-6
[14] 钟智丽, 王玉新. 聚丙烯长丝/芳纶复合纱捻度的优化[J]. 纺织学报, 2014, 35(6):40-44.
ZHONG Zhili, WANG Yuxin. Twist optimization of polypropylene filament/aramid wrapped yarn[J]. Journal of Textile Research, 2014, 35(6):40-44.
[1] XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24.
[2] GU Weiwen, WANG Wenqing, WEI Lifei, SUN Chenying, HAO Dan, WEI Jianfei, WANG Rui. Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate) [J]. Journal of Textile Research, 2021, 42(07): 1-10.
[3] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[4] GUAN Zhenyu, ZHOU Wenle, ZHANG Yumei, WANG Huaping. Kinetic study on synthesis of bottle polyester using Ti-Mg catalyst [J]. Journal of Textile Research, 2021, 42(03): 64-70.
[5] MENG Lingling, WEI Qufu, YAN Zhongjie, ZHONG Zhenzhen, WANG Xiaohui, SHEN Jiayu, CHEN Hongwei. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering [J]. Journal of Textile Research, 2021, 42(03): 143-148.
[6] HUANG Di, LI Fang, LI Gang. Preparation and performance of polyester/silk woven heart valve [J]. Journal of Textile Research, 2021, 42(02): 74-79.
[7] JIN Linlin, TIAN Junkai, LI Jiawei, QI Dongming, SHEN Xiaowei, WU Chuntao. Synthesis and properties of biodegradable polyglycolic acid oligomer modified polyester [J]. Journal of Textile Research, 2021, 42(01): 16-21.
[8] SHAO Jingfeng, LI Ning, CAI Zaisheng. Parameters optimization on polyester drawn textured yarn based on fuzzy multi-criteria [J]. Journal of Textile Research, 2021, 42(01): 46-52.
[9] CHEN Jieru, QIU Shiyuan, YANG Qingqing, ZHOU Yi. Research on inter-yarn friction of aramid fabric based on adjustable tension device [J]. Journal of Textile Research, 2021, 42(01): 67-72.
[10] LI Meizhen, ZHAO Shiyi, FENG Yanli, GUO Xiaoqing, YU Xiaoqing. Preparation and properties of conveyor belt reinforced by F-12 aramid fabric [J]. Journal of Textile Research, 2020, 41(12): 87-93.
[11] CHEN Kang, JIANG Quan, JI Hong, ZHANG Yang, SONG Minggen, ZHANG Yumei, WANG Huaping. Temperature related creep rupture mechanism of high-tenacity polyester industrial fiber [J]. Journal of Textile Research, 2020, 41(11): 1-9.
[12] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[13] CHEN Yong, WANG Jingjing, WANG Chaosheng, GU Donghua, WU Jing, WANG Huaping. Effect of oligomers on crystalline properties of polytrimethylene terephthalate [J]. Journal of Textile Research, 2020, 41(10): 1-6.
[14] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[15] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!