Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (07): 54-61.doi: 10.13475/j.fzxb.20200808308

• Fiber Materials • Previous Articles     Next Articles

Preparation and characterization of lignin/polyacrylonitrile-based carbon fibers

YANG Zhi1, LIU Chengkun1(), WU Hong2, MAO Xue1   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Shaanxi Textile Science Institute, Xi'an, Shaanxi 710038,China
  • Received:2020-08-20 Revised:2021-04-09 Online:2021-07-15 Published:2021-07-22
  • Contact: LIU Chengkun E-mail:liuchengkun@xpu.edu.cn

Abstract:

In order to use lignin as a renewable and degradable raw material in the preparation of carbon fiber, lignin/polyacrylonitrile (PAN) based carbon fiber was prepared by electrospinning, pre-oxidation and carbonization. The effect of lignin addition on the properties of spinning solution and structure and properties of preoxidized fiber and carbon fiber were studied by means of rotary rheometer, conductivity meter, scanning electron microscope, Fourier transform infrared spectrometer, X-ray photoelectron spectroscopy and specific surface area tester.The results show that the mass ratio of lignin to PAN can be increased to 90∶10 on the basis of ensuring the solution spinnability and fiber-forming property, which maximizes the high-value utilization of lignin. The pre-oxidized fiber has a heat-resistant and stable trapezoidal structure after adding lignin. The specific surface area of carbon nanofiber increases from 50.49 to 849.89 m2/g, which has important potential application value in battery, supercapacitor and other energy fields.

Key words: electrospinning, lignin, polyacrylonitrile, pre-oxidized fiber, carbon fiber

CLC Number: 

  • TS102.6

Fig.1

FE-SEM images of composite fiber membranes prepared under different mass ratios of lignin/PAN"

Tab.1

Conductivity and viscosity of solutions with different solvent volume ratios of DMSO and DMF"

DMSO和DMF体积比 电导率/(mS·cm-1) 黏度/(Pa·s)
100:0 0.32 0.878
70:30 0.39 1.309
60:40 0.47 2.294
50:50 0.58 2.634

Fig.2

FE-SEM images of composite fiber membranes prepared under different solvent volume ratios of DMSO and DMF"

Fig.3

FE-SEM images of composite fiber membranes prepared under different solution concentrations"

Fig.4

DSC curve of lignin/PAN composite fiber membranes"

Fig.5

DSC curves of preoxidized fiber under different preoxidation temperatures"

Tab.2

DSC parameters of preoxidized fiber under different preoxidation temperatures"

预氧化
温度/℃
放热起始
温度/℃
放热峰值
温度/℃
放热终止
温度/℃
放热量/
(J·g-1)
环化
度/%
240 262.9 332.9 411.3 4 276 48.8
260 275.3 339.1 404.3 3 511 57.9
280 284.7 351.3 420.1 2 769 83.5
300 297.6 375.7 441.0 1 341 83.9

Fig.6

FE-SEM images of preoxidized fiber under different preoxidation temperatures"

Fig.7

FT-IR spectra of preoxidized fiber at different preoxidation temperatures"

Fig.8

FE-SEM images of PAN-based carbon fiber (a) and lignin/PAN-based carbon fiber (b)"

Fig.9

XRD (a) and Raman (b) patterns of PAN-based carbon fiber and lignin/PAN-based carbon fiber"

Fig.10

Pore size distribution and N2 adsorption-desorption isotherms of PAN-based carbon fiber and lignin/PAN-based carbon fiber "

[1] RAZA A, WANG J Q, YANG S, et al. Hierarchical porous carbon nanofibers via electrospinning[J]. Carbon Letters, 2014, 15(1):1-14.
doi: 10.5714/CL.2014.15.1.001
[2] SCHLEE P, HEROU S, JERVIS R, et al. Free-standing supercapacitors from kraft lignin nanofibers with remarkable volumetric energy density[J]. Chemical Science, 2019, 10(10):2980-2988.
doi: 10.1039/C8SC04936J
[3] 许丽洪. 电纺木质素/聚丙烯腈基碳纤维复合纳米材料及其储能特性研究[D]. 福州: 福建师范大学, 2015:11-12.
XU Lihong. Energy storage performance of composite nanomaterials derived from electrospun LN-/PAN-based carbon fibers[D]. Fuzhou: Fujian Normal University, 2015: 11-12.
[4] JAYAWICKRAMAGE R, BALKUS K J, FERRARIS J P, et al. Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors[J]. Nanotechnology, 2019, 30(35):355402.
doi: 10.1088/1361-6528/ab2274
[5] KAZZAZ A E, FATEHI P. Fabrication of amphoteric lignin and its hydrophilicity/oleophilicity at oil/water interface[J]. Journal of Colloid and Interface Science, 2020, 561:231-243.
doi: 10.1016/j.jcis.2019.11.111
[6] ZHU J D, YAN C Y, ZHANG X, et al. A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors[J]. Progress in Energy and Combustion Science, 2020, 76:100788.
doi: 10.1016/j.pecs.2019.100788
[7] SCHLEE P, HOSSEINAEI O, BAKER D, et al. From waste to wealth: from kraft lignin to free-standing supercapacitors[J]. Carbon, 2019, 145:470-480.
doi: 10.1016/j.carbon.2019.01.035
[8] DAI Z, REN P G, AN Y L, et al. Nitrogen-sulphur Co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor[J]. Journal of Power Sources, 2019, 437:226937.
doi: 10.1016/j.jpowsour.2019.226937
[9] TAO L, HUANG Y B, ZHENG Y W, et al. Porous carbon nanofiber derived from a waste biomass as anode material in lithium-ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95:217-226.
doi: 10.1016/j.jtice.2018.07.005
[10] SONG M, TANG X H, XU J, et al. The formation of novel carbon/carbon composite by chemical vapor deposition: an efficient adsorbent for enhanced desulfurization performance[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118:34-41.
doi: 10.1016/j.jaap.2015.12.020
[11] 顾红星, 王浩静, 范立东, 等. 聚丙烯腈预氧丝预氧化程度表征分析[J]. 化工学报, 2015, 66(3):1228-1233.
GU Hongxing, WANG Haojing, FAN Lidong, et al. Evaluation and analysis of pre-oxidation extent of polyacrylonitrile fiber[J]. CIESC Journal, 2015, 66(3):1228-1233.
[12] MA A, LI C, DU W, et al. Study on biomass based nanofibers preparation by electrospinning[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(9):7204-7210.
doi: 10.1166/jnn.2014.8976
[13] WANG X, ZHANG W, CHEN M Z, et al. Electrospun enzymatic hydrolysis lignin-based carbon nanofibers as binder-free supercapacitor electrodes with high performance[J]. Polymers, 2018, 10(12):1306.
doi: 10.3390/polym10121306
[14] 王成国, 朱波. 聚丙烯腈基碳纤维[M]. 北京: 中国科学出版社, 2011: 114-118.
WANG Chengguo, ZHU Bo. Polyacrylonitrile-based carbon fiber [M]. Beijing: China Science Press, 2011: 114-118.
[15] 贺福. 碳纤维及石墨纤维[M]. 北京: 化学工业出版社, 2017: 161-163.
HE Fu. Carbon fiber and graphite fiber [M]. Beijing: Chemical Industry Press, 2017: 161-163.
[16] DING R, WU H, THUNGA M, et al. Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends[J]. Carbon, 2016, 100:126-136.
doi: 10.1016/j.carbon.2015.12.078
[17] DAI Z, SHI X, LIU H, et al. High-strength lignin-based carbon fibers via a low-energy method[J]. RSC Advances, 2018, 8(3):1218-1224.
doi: 10.1039/C7RA10821D
[18] DALLMEYER I, LIN L T, LI Y, et al. Preparation and characterization of interconnected, kraft lignin-based carbon fibrous materials by electrospinning[J]. Macromolecular Materials and Engineering, 2014, 299(5):540-551.
doi: 10.1002/mame.v299.5
[19] OROUMEI A, FOX B, NAEBE M. Thermal and rheological characteristics of biobased carbon fiber precursor derived from low molecular weight organosolv lignin[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(4):758-769.
[20] 蔡则田. 用Raman光谱研究碳纤维结构及其微观力学性能[D]. 上海: 东华大学, 2010: 4-9.
CAI Zetian. Stduies on the structure and micro-mechanical properties of carbon fiber by raman sepectrum[D]. Shanghai: Donghua University, 2010: 4-9.
[21] LAI C L, ZHOU Z P, ZHANG L F, et al. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors[J]. Journal of Power Sources, 2014, 247:134-141.
doi: 10.1016/j.jpowsour.2013.08.082
[22] JAYAWICKRAMAGE R A P, FERRARIS J P. High performance supercapacitors using lignin based electrospun carbon nanofiber electrodes in ionic liquid electrolytes[J]. Nanotechnology, 2019, 30(15):155402.
doi: 10.1088/1361-6528/aafe95
[23] 王欢. 木质素碳/ZnO复合材料的制备及在光催化和超级电容器中的应用[D]. 广州: 华南理工大学, 2018: 133-134.
WANG Huan. Preparation of lignin-based carbon and ZnO composite and its application in photocatalysis and supercapacitor[D]. Guangzhou: South China University of Technology, 2018: 133-134.
[1] YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68.
[2] GUO Fengyun, GUO Ziyi, GAO Lei, ZHENG Linjing. Preparation and properties of thermal bonded fibrous artificial blood vessels [J]. Journal of Textile Research, 2021, 42(06): 46-50.
[3] DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56.
[4] CHEN Yu, XIA Xin. Preparation and electrochemical properties of liquid GaSn self-repairing anode materials for lithium-ion batteries [J]. Journal of Textile Research, 2021, 42(06): 57-62.
[5] LIU Xiaoqian, CHEN Yu, ZHOU Huimin, YAN Yuan, XIA Xin. Preparation of polyacrylonitrile conductive nanofiber yarn grafted with acrylic acid using plasma technology [J]. Journal of Textile Research, 2021, 42(05): 109-114.
[6] ZHANG Beilei, SHEN Mingwu, SHI Xiangyang. Preparation and biomedical applications of electrospun short fibers [J]. Journal of Textile Research, 2021, 42(05): 1-8.
[7] ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang, CHEN Wenxing. Photocatalytic performance of iron hexadecachlorophthalocyanine/ polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion [J]. Journal of Textile Research, 2021, 42(05): 9-15.
[8] ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45.
[9] YU Meiqiong, YUAN Hongmei, CHEN Lihui. Rheological properties of cellulose/LiCl/ N, N-dimethylacetamide solution [J]. Journal of Textile Research, 2021, 42(05): 23-30.
[10] ZHAO Xinzhe, WANG Shaoxia, GAO Jing, WANG Lu. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes [J]. Journal of Textile Research, 2021, 42(04): 33-41.
[11] ZHANG Runke, LÜ Wangyang, CHEN Wenxing. Preparation and electrochemical properties of carbon fiber fabric sensors co-modified by cobalt phthalocyanine and carbon nanotubes [J]. Journal of Textile Research, 2021, 42(04): 121-126.
[12] CHENG Yue, AN Qi, LI Dawei, FU Yijun, ZHANG Wei, ZHANG Yu. Preparation of SiO2 in-situ doped polyvinylidene fluoride nanofiber membrane and its properties [J]. Journal of Textile Research, 2021, 42(03): 71-76.
[13] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49.
[14] XING Yusheng, HU Yi, CHENG Zhongling. Preparation and properties of Si/TiO2 composite carbon nanofibers [J]. Journal of Textile Research, 2021, 42(03): 36-43.
[15] CHEN Junyan, JU Jingge, DENG Nanping, YANG Qi, CHENG Bowen, KANG Weimin. Application of rabbit hair based hollow carbon fiber in lithium-sulfur battery [J]. Journal of Textile Research, 2021, 42(03): 56-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!