Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (08): 1-7.doi: 10.13475/j.fzxb.20210300507

• Academic Salon Column for New Insight of Textile Science and Technology: Recycling and Biodegradable Fiber •     Next Articles

Study on structure and moisture absorption and liberation properties of bio-based polyamide 56 and polyamide 66

WANG Jianming1, LI Yongfeng1,2, HAO Xinmin2(), YAN Jinlong2, QIAO Rongrong2, WANG Meihui2   

  1. 1. School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Institute of Quartermaster Engineering & Technology, Systems Engineering Institute, Academy of Military Sciences, Beijing 100010, China
  • Received:2021-03-01 Revised:2021-05-17 Online:2021-08-15 Published:2021-08-24
  • Contact: HAO Xinmin E-mail:xminhao@126.com

Abstract:

Aiming at the analyse of moisture absorption and liberation properties of bio-based polyamide 56 and polyamide 66, characteristic curves of moisture absorption and liberation, and drying of bio-based polyamide 56 draw texturing yarn (DTY), polyamide 66 DTY, bio-based polyamide 56 and polyamide 66 staple fiber were obtained by testing under the standard condition. According to the characteristic curves, the regression equation of moisture regain or moisture content to time were deduced during the moisture absorption, liberation and drying equilibrium process for the four types of fibers under the standard testing conditions. The results show that under standard atmospheric conditions, bio-based polyamide 56 fiber has a higher moisture absorption and liberation balance, higher moisture absorption and drying rates, and a slightly lower initial moisture release rate compared with the polyamide 66 fiber. However, bio-based polyamide 56 has a higher moisture release rate than polyamide 66 with the increase of time. The moisture absorption isotherms of the four types of fibers are all in a reverse "S" shape. In a high humidity environment, the drying property of bio-based polyamide 56 is better than that of polyamide 66, i.e., bio-based polyamide 56 has better quick-drying performance.

Key words: bio-based polyamide 56, polyamide 66, fiber structure, moisture adsorption property, moisture liberation property

CLC Number: 

  • TS102.5

Fig.1

DSC (a) and XRD (b) curves of four kinds of polyamide fiber"

Tab.1

Melting point and crystallinity of four kinds of polyamide fibers"

纤维种类 熔点/℃ 结晶度/%
生物基PA56 DTY 250.2 43.3
PA66 DTY 254.4 58.9
生物基PA56 短纤维 249.9 37.0
PA66 短纤维 250.6 44.4

Fig.2

Moisture absorption and liberation curves of four kinds of polyamide fiber. (a) Bio-based PA56 DTY and PA66 DTY; (b) Bio-based PA56 staple fiber and PA66 staple fiber"

Fig.3

Drying curves of four kinds of polyamide fibers in standard atmosphere. (a) Bio-based PA56 DTY and PA66 DTY; (b) Bio-based PA56 staple fiber and PA66 staple fiber"

Tab.2

Regression equation to time of moisture absorption, liberation regain and drying moisture content"

纤维种类 吸湿回归方程 放湿回归方程 干燥回归方程
生物基PA56 DTY W = 4.461 - 4.195 e - 0.08812 t W = 4.801 - 7.779 e - 0.04445 t W = 3.783 + 27.458 e - 0.00705 t
PA66 DTY W = 3.676 - 3.562 e - 0.09457 t W = 3.913 - 5.821 e - 0.06644 t W = 2.255 + 29.337 e - 0.00582 t
生物基PA56短纤维 W = 4.991 - 4.951 e - 0.06294 t W = 5.241 - 7.017 e - 0.02785 t W = 4.392 + 27.153 e - 0.00898 t
PA66短纤维 W = 4.251 - 4.220 e - 0.06394 t W = 4.358 - 5.999 e - 0.05478 t W = 3.239 + 28.636 e - 0.00271 t

Tab.3

Regression equation to time of moisture absorption, liberation and drying rate"

纤维种类 吸湿速率回归方程 放湿速率回归方程 干燥速率回归方程
生物基PA56 DTY υ=0.369 7e-0.088 12t υ=0.345 8e-0.044 45t υ=0.193 6e-0.007 05t
PA66 DTY υ=0.336 8e-0.094 57t υ=0.386 7e-0.066 44t υ=0.170 7e-0.005 82t
生物基PA56短纤维 υ=0.311 6e-0.062 94t υ=0.195 4e-0.027 85t υ=0.243 8e-0.008 98t
PA66短纤维 υ=0.269 8e-0.063 94t υ=0.328 6e-0.054 78t υ=0.206 5e-0.007 21t

Fig.4

Regression curves of moisture absorption rate of bio-based PA56、PA66 DTY and staple fiber"

Fig.5

Regression curves of moisture liberation rate of bio-based PA56、PA66 DTY and staple fiber"

Fig.6

Regression curves of drying rate of bio-based PA56、PA66 DTY and staple fiber"

Fig.7

Moisture absorption isotherms of four kinds of polyamide fibers"

[1] 郝新敏, 李岳玲, 王建明, 等. 锦纶酸性染料染色动力学对比研究[J]. 纺织学报, 2015, 36(2):77-80, 97.
HAO Xinmin, LI Yueling, WANG Jianming, et al. Study on acid dyestuff dyeing kinetics of polyamide 56 fiber compared with polyamide 6 and 66[J]. Journal of Textile Research, 2015, 36(2):77-80,97.
[2] 李志群, 王铭芳, 陈国平. 锦纶66 的活性染料染色工艺[J]. 针织工业, 2007(8):51-53.
LI Zhiqun, WANG Mingfang, CHEN Guoping. Dyeing of PA66 by reactive dyes[J]. Knitting Industries, 2007(8):51-53.
[3] LI Yueling, HAO Xinmin, GUO Yafei, et al. Study on the acid resistant properties of bio-based nylon 56 fiber compared with the fiber of nylon 6 and nylon 66[J]. Advances in Textile Engineering and Materials, 2014, 1048:57-61.
[4] 王迎, 王怡婷, 吴佳庆, 等. 生物基锦纶56用抗静电纺丝油剂的复配及其对短纤维可纺性的影响[J]. 纺织学报, 2021, 42(1):84-89.
WANG Ying, WANG Yiting, WU Jiaqing, et al. Preparation of compound antistatic spinning oil for bio-based polyamide 56 and its effect on staple fiber spinnability[J]. Journal of Textile Research, 2021, 42(1):84-89.
[5] 郝新敏, 郭亚飞. 生物基锦纶环保加工技术及其应用[J]. 纺织学报, 2015, 36(4):159-164.
HAO Xinmin, GUO Yafei. Environment-friendly processing technology and application of bio-based polyamide fiber[J]. Journal of Textile Research, 2015, 36(4):159-164.
[6] 闫红芹, 韦骏野. 汉麻纤维吸湿性能研究[J]. 棉纺织技术, 2014, 42(12):5-8.
YAN Hongqin, WEI Junye. Study on moisture absorption of hemp fiber[J]. Cotton Textile Technology, 2014, 42(12):5-8.
[7] 杨革生, 刘德伟, 邵惠丽, 等. Lyocell法竹纤维素纤维的结构与吸湿性能的研究[J]. 针织工业, 2007(11):27-30.
YANG Gesheng, LIU Dewei, SHAO Huili, et al. A research on the structure and moisture absorption property of the Lyocell method based bamboo cellulose fiber[J]. Knitting Industries, 2007(11):27-30.
[8] 王建刚, 倪海燕, 袁小红, 等. 莲纤维的吸湿性能[J]. 纺织学报, 2009, 30(9):11-14.
WANG Jiangang, NI Haiyan, YUAN Xiaohong, et al. Moisture adsorption property of lotus fibers[J]. Journal of Textile Research, 2009, 30(9):11-14.
[9] 朱进忠, 苏玉恒, 毛慧贤, 等. 几种纤维素纤维吸湿性能的测试分析[J]. 天津工业大学学报, 2010, 29(4):29-32.
ZHU Jinzhong, SU Yuheng, MAO Huixian, et al. Study on moisture absorption of some cellulose fibers[J]. Journal of Tiangong University, 2010, 29(4):29-32.
[10] 王增喜. Sorona弹力短纤维吸放湿性能研究[J]. 化纤与纺织技术, 2016, 45(4):18-21.
WANG Zengxi. Study on moisture absorption and liberation properties of Sorona elastic short fiber[J]. Chemical Fiber & Textile Technology, 2016, 45(4):18-21.
[11] 蔡再生. 纤维化学与物理[M]. 北京: 中国纺织出版社, 2009: 117-119.
CAI Zaisheng. Chemistry and physics of fibers [M]. Beijing: China Textile & Apparel Press, 2009: 117-119.
[12] 李岳玲. 生物基锦纶 56 的结构与性能[D]. 北京: 北京服装学院, 2014: 19-38.
LI Yueling. Structure and properties of bio-based polyamide 56[D]. Beijing: Beijing Institute of Fashion Technology, 2014: 19-38.
[13] 姚穆. 纺织材料学[M]. 北京: 中国纺织出版社, 2009: 48.
YAO Mu. Textile materials[M]. Beijing: China Textile & Apparel Press, 2009: 48.
[14] 毛月, 王妮, 刘丽芳, 等. 中空黏胶纤维吸、放湿性能研究[J]. 国际纺织导报, 2017, 45(4):4-8.
MAO Yue, WANG Ni, LIU Lifang, et al. Study on moisture absorption and liberation behavior of hollow viscose fiber[J]. Melliand China, 2017, 45(4):4-8.
[15] 万玉芹, 吴丽莉, 俞建勇. 竹纤维吸湿性能研究[J]. 纺织学报, 2004, 25(3):14-16.
WAN Yuqin, WU Lili, YU Jianyong. Research on hygroscopic property of the bamboo fiber[J]. Journal of Textile Research, 2004, 25(3):14-16.
[16] 刘红茹, 张丽平, 刘斐. 异形涤纶织物吸湿等温线的研究与模拟[J]. 天津工业大学学报, 2013, 32(3):38-43.
LIU Hongru, ZHANG Liping, LIU Fei. Research and simulations of moisture absorption isotherms of profiled polyester fabric[J]. Journal of Tiangong University, 2013, 32(3):38-43.
[17] 陈天文, 傅吉全, 李伟哲, 等. 织物的吸湿及放湿性研究[J]. 北京服装学院学报(自然科学版), 2005(4):48-56.
CHEN Tianwen, FU Jiquan, LI Weizhe, et al. Study on the moisture absorption and desorption of fabric[J]. Journal of Beijing Institute of Fashion Techn-ology(Natural Science Edition), 2005(4):48-56.
[1] YANG Tingting, GAO Yuanbo, ZHENG Yi, WANG Xueli, HE Yong. Thermal degradation kinetics and pyrolysis products of bio-based polyamide 56 fiber [J]. Journal of Textile Research, 2021, 42(04): 1-7.
[2] SUN Chaoxu, LIU Xiucai. Research progress on applications of bio-based polyamide 56 fibers in textile fields [J]. Journal of Textile Research, 2021, 42(04): 26-32.
[3] ZHANG Jiao, GAO Xuefeng, WANG Yuzhou, LIU Haihui, ZHANG Xingxiang. Preparation and properties of polyamide 66/amino-functionalized multi-walled carbon nanotubes fibers [J]. Journal of Textile Research, 2019, 40(11): 1-8.
[4] . Crystallization behavior of bio-based polyamide 56 fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 7-13.
[5] . Proerties of ethylene-tetrafluoroethylene copolymer fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 6-11.
[6] . Comparisons among physical properties of yakwool, camel hair and cashmere [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 1-5.
[7] . Combined mechanical and enzyme degumming process of cotton stald bast fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(2): 95-100.
[8] ZHONG An-hua;TAN Yuan-you;WANG Cheng-guo;HUANG Cui-rong;ZOU Hua. Effect of ramie's growth period on its structure and character [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(5): 20-22.
[9] ZHOU Lan;SHAO Jian-zhong;ZHENG Jin-huan;WANG Li-na . Structure and properties of mulberry-silk fiber in different cocoon layers [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(2): 21-23.
[10] QIN Yi-min . Absorption mechanism analysis about alginate wound dressings [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 113-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!