Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (08): 175-184.doi: 10.13475/j.fzxb.20200606110
• Comprehensive Review • Previous Articles Next Articles
CLC Number:
[1] | 明津法. SF/SA/HAp复合水凝胶研究及其生物相容性[D]. 苏州:苏州大学, 2014: 1. |
MING Jinfa. SF/SA/HAP hydroxyapatite fibrous hydrogels and its biocompatibility[D]. Suzhou: Soochow University, 2014: 1. | |
[2] |
COBB L H, MCCABE E M, PRIDDY L B. Therapeutics and delivery vehicles for local treatment of osteomye-litis[J]. Journal of Orthopaedic Research, 2020, 38(10):2091-2103.
doi: 10.1002/jor.v38.10 |
[3] | BHARADWAZ A, JAYASURIYA A C. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J]. Materials Science & Engineering C: Materials for Biological Applications, 2020, 110:110698. |
[4] |
BOSE S, ROY M, BANDYOPADHYAY A. Recent advances in bone tissue engineering scaffolds[J]. Trends in Biotechnology, 2012, 30(10):546-554.
doi: 10.1016/j.tibtech.2012.07.005 |
[5] |
PENG Zhili, ZHAO Tianshu, ZHOU Yiqun, et al. Bone tissue engineering via carbon-based nanomaterials[J]. Advanced Healthcare Materials, 2020, 9(5):1901495.
doi: 10.1002/adhm.201901495 pmid: 31976623 |
[6] |
HUTMACHER D W. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials, 2000, 21(24):2529-2543.
doi: 10.1016/S0142-9612(00)00121-6 |
[7] |
NAZAROV R, JIN H J, KAPLAN D L. Porous 3-D scaffolds from regenerated silk fibroin[J]. Biomacromolecules, 2004, 5(3):718-726.
doi: 10.1021/bm034327e |
[8] |
KRISHNAN A G, BISWAS R, MENON D, et al. Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis[J]. Biomaterials Science, 2020, 8(9):2653-2665.
doi: 10.1039/D0BM00140F |
[9] | LI Xiaoni, XU Pu, CHENG Yanan, et al. Nano-pearl powder/chitosan-hyaluronic acid porous composite scaffold and preliminary study of its osteogenesis mechanism[J]. Materials Science & Engineering C:Materials for Biological Applications, 2020, 111(6):110749. |
[10] | JIANG L Y, LI Y, XIONG C D, et al. Preparation and properties of bamboo fiber/nano-hydroxyapatite/poly(lactic-co-glycolic) composite scaffold for bone tissue engineering[J]. ACS Applied Materials & Interfaces, 2017, 9(5):4890-4897. |
[11] | BHARADWAZ A, JAYASURIYA A C. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J]. Materials Science & Engineering C: Materials for Biological Applications, 2020, 110:110698. |
[12] |
KOH Leng-Duei, CHENG Yuan, TENG Choon-Peng, et al. Structures, mechanical properties and applications of silk fibroin materials[J]. Progress in Polymer Science, 2015, 46:86-110.
doi: 10.1016/j.progpolymsci.2015.02.001 |
[13] |
VEPARI C, KAPLAN D L. Silk as a biomaterial[J]. Progress in Polymer Science, 2007, 32(8/9):991-1007.
doi: 10.1016/j.progpolymsci.2007.05.013 |
[14] |
KIM U J, PARK J Y, LI C M, et al. Structure and properties of silk hydrogels[J]. Biomacromolecules, 2004, 5(3):786-792.
doi: 10.1021/bm0345460 |
[15] |
GOKILA S, GOMATHI T, VIJAYALAKSHMI K, et al. Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications[J]. International Journal of Biological Macromolecules, 2018, 120:876-885.
doi: 10.1016/j.ijbiomac.2018.08.149 |
[16] | ZHANG Feng, YOU Xinran, DOU Hao, et al. Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution[J]. ACS Applied Materials & Interfaces, 2015, 7(5):3352-3361. |
[17] |
CHO H J, KI C S, OH H, et al. Molecular weight distribution and solution properties of silk fibroins with different dissolution conditions[J]. International Journal of Biological Macromolecules, 2012, 51(3):336-341.
doi: 10.1016/j.ijbiomac.2012.06.007 |
[18] |
PHAN Nguyen Thang, VINH Nguyen Quang, VAN-HUY Nguyen, et al. Silk fibroin-based biomaterials for biomedical applications: a review[J]. Polymers, 2019, 11(12):1933.
doi: 10.3390/polym11121933 |
[19] |
JOHARI Narges, HOSSEINI Hamid Reza Madaah,SAMADIKUCHAKSARAEI Ali. Mechanical modeling of silk fibroin/TiO2 and silk fibroin/fluoridated TiO2 nanocomposite scaffolds for bone tissue engineering[J]. Iranian Polymer Journal, 2020, 29(3):219-224.
doi: 10.1007/s13726-020-00789-6 |
[20] |
LIU F, LIU C, ZHENG B W, et al. Synergistic effects on incorporation of beta-tricalcium phosphate and graphene oxide nanoparticles to silk fibroin/soy protein isolate scaffolds for bone tissue engineering[J]. Polymers, 2020, 12(1):69.
doi: 10.3390/polym12010069 |
[21] |
NARIMANI M, TEIMOURI A, SHAHBAZARAB Z. Synjournal, characterization and biocompatible properties of novel silk fibroin/graphene oxide nanocomposite scaffolds for bone tissue engineering application[J]. Polymer Bulletin, 2019, 76(2):725-745.
doi: 10.1007/s00289-018-2390-2 |
[22] |
SUN J C, SHAKYA S, GONG M, et al. Combined application of graphene-family materials and silk fibroin in biomedicine[J]. Chemistryselect, 2019, 4(19):5745-5754.
doi: 10.1002/slct.v4.19 |
[23] |
SALEEM M, RASHEED S, CHEN Y G. Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration[J]. Science and Technology of Advanced Materials, 2020, 21(1):242-266.
doi: 10.1080/14686996.2020.1748520 |
[24] |
VALARMATHI N, SUMATHI S. Biomimetic hydroxyapatite/silkfibre/methylcellulose composites for bone tissue engineering applications[J]. New Journal of Chemistry, 2020, 44(11):4647-4663.
doi: 10.1039/C9NJ05592D |
[25] |
LI P F, JIA Z R, WANG Q, et al. A resilient and flexible chitosan/silk cryogel incorporated Ag/Sr co-doped nanoscale hydroxyapatite for osteoinductivity and antibacterial properties[J]. Journal of Materials Chemistry B, 2018, 6(45):7427-7438.
doi: 10.1039/C8TB01672K |
[26] | YE P, YU B, DENG J, et al. Application of silk fibroin/chitosan/nano-hydroxyapatite composite scaffold in the repair of rabbit radial bone defect[J]. Experimental and Therapeutic Medicine, 2017, 14(6):5547-5553. |
[27] |
MARTINO A D, SITTINGER M, RISBUB M V. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering[J]. Biomaterials, 2005, 26(30):5983-5990.
doi: 10.1016/j.biomaterials.2005.03.016 |
[28] |
DONG C J, LV Y G. Application of collagen scaffold in tissue engineering: recent advances and new perspectives[J]. Polymers, 2016, 8(2):42.
doi: 10.3390/polym8020042 |
[29] |
KOGAN Grigorij, LTES Ladislav, STERN Robert, et al. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications[J]. Biotechnology Letters, 2007, 29(1):17-25.
pmid: 17091377 |
[30] |
PARENTEAU-BAREIL Remi, GAUVIN Robert, BERTHOD Francois. Collagen-based biomaterials for tissue engineering applications[J]. Materials, 2010, 3(3):1863-1887.
doi: 10.3390/ma3031863 |
[31] | POURJAVADI Ali, TEHRANI Zahra Mazaheri, SALAMI Hamid, et al. Both tough and soft double network hydrogel nanocomposite based on O-arboxymethyl chitosan/poly(vinyl alcohol) and graphene oxide: a promising alternative for tissue engineering[J]. Polymer Engineering & Science, 2020, 60(5):889-899. |
[32] |
ZHOU Huan, LAWRENCE Joseph G, BHADURI Sarit B. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review[J]. Acta Biomaterialia, 2012, 8(6):1999-2016.
doi: 10.1016/j.actbio.2012.01.031 pmid: 22342596 |
[33] | 方艳, 徐水, 吴婷芳, 等. 丝胶蛋白/羟基磷灰石/聚己内酯复合支架材料的制备及表征[J]. 材料导报, 2019, 33(S2):533-537. |
FANG Yan, XU Shui, WU Tingfang, et al. Preparation and characterization of sericin/hydroxyapatite/polycaprolactone composite scaffold materials[J]. Materials Reports, 2019, 33(S2):533-537. | |
[34] |
DONNALOJA Francesca, JACCHETTI Emanuela, SONCINI Monica, et al. Natural and synthetic polymers for bone scaffolds optimization[J]. Polymers, 2020, 12(4):905.
doi: 10.3390/polym12040905 |
[35] |
LEE C H, SINGLA A, LEE Y. Biomedical applications of collagen[J]. International Journal of Pharmaceutics, 2001, 221(1/2):1-22.
doi: 10.1016/S0378-5173(01)00691-3 |
[36] |
LU Ting, HU Hong, LI Yuanqi, et al. Bioactive scaffolds based on collagen filaments with tunable physico-chemical and biological features[J]. Soft Matter, 2020, 16(18):4540-4548.
doi: 10.1039/d0sm00233j pmid: 32356540 |
[37] |
FERREIRA A M, GENTILE P, CHIONO V, et al. Collagen for bone tissue regeneration[J]. Acta Biomaterialia, 2012, 8(9):3191-3200.
doi: 10.1016/j.actbio.2012.06.014 |
[38] |
LEE Y B, SONG S J, SHIN Y C, et al. Ternary nanofiber matrices composed of PCL/black phosphorus/collagen to enhance osteodifferentiation[J]. Journal of Industrial and Engineering Chemistry, 2019, 80:802-810.
doi: 10.1016/j.jiec.2019.06.055 |
[39] |
NONG L M, ZHOU D, ZHENG D, et al. The effect of different cross-linking conditions of EDC/NHS on type II collagen scaffolds: an in vitro evaluation[J]. Cell and Tissue Banking, 2019, 20(4):557-568.
doi: 10.1007/s10561-019-09790-7 |
[40] | LIU S K, ZHOU C C, MOU S, et al. Biocompatible graphene oxide-collagen composite aerogel for enhanced stiffness and in situ bone regeneration[J]. Materials Science & Engineering C:Materials for Biological Applications, 2019, 105:110137. |
[41] |
SUH J K F, MATTHEW H W T. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review[J]. Biomaterials, 2000, 21(24):2589-2598.
doi: 10.1016/S0142-9612(00)00126-5 |
[42] |
SEOL Y J, LEE J Y, PARK Y J, et al. Chitosan sponges as tissue engineering scaffolds for bone formation[J]. Biotechnology Letters, 2004, 26(13):1037-1041.
doi: 10.1023/B:BILE.0000032962.79531.fd |
[43] |
EI-MELIEGY E, ABU-ELSAAD N I, EI-KADY A M, et al. Improvement of physico-chemical properties of dextran-chitosan composite scaffolds by addition of nano-hydroxyapatite[J]. Scientific Reports, 2018, 8:12180.
doi: 10.1038/s41598-018-30720-2 pmid: 30111828 |
[44] |
MAJI S, AGARWAL T, DAS J, et al. Development of gelatin/carboxymethyl chitosan/nano-hydroxyapatite composite 3D macroporous scaffold for bone tissue engineering applications[J]. Carbohydrate Polymers, 2018, 189:115-125.
doi: 10.1016/j.carbpol.2018.01.104 |
[45] | SHANMUGAM Balu Kolathupalayam, RANGARAJ Suriyaprabha, SUBRAMANI Karthik, et al. Biomimetic TiO2-chitosan/sodium alginate blended nanocomposite scaffolds for tissue engineering applications[J]. Materials Science & Engineering C:Materials for Biological Applications, 2020, 110:110710. |
[46] |
GARNICA-PALAFOX I M, ETRELLA-MONROY H O, VAZQUEZ-TORRES N A, et al. Influence of multi-walled carbon nanotubes on the physico-chemical and biological responses of chitosan-based hybrid hydrog-els[J]. Carbohydrate Polymers, 2020, 236:115971.
doi: 10.1016/j.carbpol.2020.115971 |
[47] |
COLLINS M N, BIRKINSHAW C. Hyaluronic acid based scaffolds for tissue engineering:a review[J]. Carbohydrate Polymers, 2013, 92(2):1262-1279.
doi: 10.1016/j.carbpol.2012.10.028 |
[48] |
GAO Feng, LI Jinrui, WANG Luyu, et al. Dual-enzymatically crosslinked hyaluronic acid hydrogel as a long-time 3D stem cell culture system[J]. Biomedical Materials, 2020, 15(4):045013.
doi: 10.1088/1748-605X/ab712e |
[49] | CHANG Kai-Chi, LIN Dan-Jae, WU Yu-Ren, et al. Characterization of genipin-crosslinked gelatin/hyaluronic acid-based hydrogel membranes and loaded with hinokitiol: in vitro evaluation of antibacterial activity and biocompatibility[J]. Materials Science & Engineering C:Materials for Biological Applications, 2019, 105:110074. |
[50] | MAKVANDI P, ALI G W, SALA F D, et al. Hyaluronic acid/corn silk extract based injectable nanocomposite: a biomimetic antibacterial scaffold for bone tissue regeneration[J]. Materials Science & Engineering C:Materials for Biological Applications, 2020, 107:110195. |
[51] |
PLACE E S, GEORGE J H, WILLIAMS C K, et al. Synthetic polymer scaffolds for tissue engineering[J]. Chemical Society Reviews, 2009, 38(4):1139-1151.
doi: 10.1039/b811392k |
[52] |
CHEN G, CHEN N, WANG Q. Fabrication and properties of poly(vinyl alcohol)/beta-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering[J]. Composites Science and Technology, 2019, 172:17-28.
doi: 10.1016/j.compscitech.2019.01.004 |
[53] |
KAUR T, THIRUGNANAM A, PRAMANIK K. Effect of carboxylated graphene nanoplatelets on mechanical and in-vitro biological properties of polyvinyl alcohol nanocomposite scaffolds for bone tissue engineering[J]. Materials Today Communications, 2017, 12:34-42.
doi: 10.1016/j.mtcomm.2017.06.004 |
[54] |
XIA S H, TENG S H, WANG P. Synjournal of bioactive polyvinyl alcohol/silica hybrid fibers for bone regeneration[J]. Materials Letters, 2018, 213:181-184.
doi: 10.1016/j.matlet.2017.11.084 |
[55] | FELICE B, SANCHEZ M A, SOCCI M C, et al. Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity[J]. Materials Science & Engineering C:Materials for Biological Applications, 2018, 93:724-738. |
[56] |
LEE S J, LEE H J, KIM S Y, et al. In situ gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: in vitro and in vivo studies[J]. Nanoscale, 2018, 10(33):15447-15453.
doi: 10.1039/C8NR04037K |
[57] | ZHAO W, LI J J, JIN K X, et al. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering[J]. Materials Science & Engineering C:Materials for Biological Applications, 2016, 59:1181-1194. |
[58] |
LIU C, WONG H M, YEUNG K W K, et al. Novel electrospun polylactic acid nanocomposite fiber mats with hybrid graphene oxide and nanohydroxyapatite reinforcements having enhanced biocompatibility[J]. Polymers, 2016, 8(8):287.
doi: 10.3390/polym8080287 |
[59] | RASOULIANBOROUJENI M, FAHIMIPOUR F, SHAH P, et al. Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications[J]. Materials Science & Engineering C:Materials for Biological Applications, 2019, 96:105-113. |
[60] | LUO Yu, SHEN He, FANG Yongxiang, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats[J]. ACS Applied Materials & Interfaces, 2015, 7(11):6331-6339. |
[61] |
LEW D P, WALDVOGEL F A. Osteomyelitis[J]. Lancet, 2004, 364(9431):369-379.
doi: 10.1016/S0140-6736(04)16727-5 |
[62] |
WANG Q, CHEN C, LIU W, et al. Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects[J]. Scientific Reports, 2017, 7:41808.
doi: 10.1038/srep41808 |
[63] | LI H W, GU J S, SHAH L A, et al. Bone cement based on vancomycin loaded mesoporous silica nanoparticle and calcium sulfate composites[J]. Materials Science & Engineering C: Materials for Biological Applications, 2015, 49:210-216. |
[64] |
AHADI F, KHORSHIDI S, KARKHANEH A. A hydrogel/fiber scaffold based on silk fibroin/oxidized pectin with sustainable release of vancomycin hydrochloride[J]. European Polymer Journal, 2019, 118:265-274.
doi: 10.1016/j.eurpolymj.2019.06.001 |
[65] | BESHELI N H, MOTTAGHITALAB F, ESLAMI M, et al. Sustainable release of vancomycin from silk fibroin nanoparticles for treating severe bone infection in rat tibia osteomyelitis model[J]. ACS Applied Materials & Interfaces, 2017, 9(6):5128-5138. |
[66] |
WANG X Q, YUCEL T, LU Q, et al. Silk nanospheres and microspheres from silk/PVA blend films for drug delivery[J]. Biomaterials, 2010, 31(6):1025-1035.
doi: 10.1016/j.biomaterials.2009.11.002 |
[67] | GONG H, WANG J, ZHANG J, et al. Control of octreotide release from silk fibroin microspheres[J]. Materials Science & Engineering C:Materials for Biological Applications, 2019, 102:820-828. |
[68] |
CEVHER E, ORHAN Z, MULAZIMOGLU L, et al. Characterization of biodegradable chitosan microspheres containing vancomycin and treatment of experimental osteomyelitis caused by methicillin-resistant staphylococcus aureus with prepared microspheres[J]. International Journal of Pharmaceutics, 2006, 317(2):127-135.
doi: 10.1016/j.ijpharm.2006.03.014 |
[69] |
AKSOY E A, YAGCI B S, MANAP G, et al. Vancomycin loaded gelatin microspheres containing wet spun poly(epsilon-caprolactone) fibers and films for osteomyelitis treatment[J]. Fibers and Polymers, 2019, 20(11):2236-2246.
doi: 10.1007/s12221-019-9271-7 |
[1] | LIU Hao, LU Minglei, HUANG Xiaowei, WANG Na, WANG Xuefang, NING Xin, MING Jinfa. Preparation and characterization of silk fibroin hydrogel in acid-alcohol system [J]. Journal of Textile Research, 2021, 42(08): 41-48. |
[2] | DING Mengyao, DAI Mengnan, LI Meng, LIU Ping, XU Jingjing, WANG Jiannan. Separation and characterization of silk fibroin with different molecular weight [J]. Journal of Textile Research, 2021, 42(07): 46-53. |
[3] | YANG Ya, YAN Fengyi, WANG Hui, ZHANG Keqin. Protein adsorption and cell response on bio-interfaces of silk fibroin/octacalcium phosphate composites [J]. Journal of Textile Research, 2021, 42(02): 41-46. |
[4] | CAO Genyang, WANG Yunli, SHENG Dan, PAN Heng, XU Weilin. Promotion mechanism of color fastness to sublimation in thermovacuum environmental conditions for fibroin powder/pigment complex [J]. Journal of Textile Research, 2021, 42(02): 1-6. |
[5] | SONG Guangzhou, TU Fangfang, DING Mengyao, DAI Mengnan, YIN Yin, DONG Fenglin, WANG Jiannan. Negatively enhanced modification of silk fibroin and its load ability to calcitonin gene-related peptide [J]. Journal of Textile Research, 2020, 41(12): 7-12. |
[6] | WANG Shudong, MA Qian, WANG Ke, QU Caixin, QI Yu. Structure and biocompatibility of silk fibroin/gelatin blended hydrogels [J]. Journal of Textile Research, 2020, 41(11): 41-47. |
[7] | WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14. |
[8] | SUN Guangdong, HUANG Yi, SHAO Jianzhong, FAN Qinguo. Blue light initiated photocrosslinking of silk fibroin hydrogel [J]. Journal of Textile Research, 2020, 41(04): 64-71. |
[9] | ZHONG Hongrong, FANG Yan, BAO Hong, WU Tingfang, ZHANG Xiaoning, XU Shui, ZHU Yong. Preparation and properties of silk fibroin based bilayer dressing materials [J]. Journal of Textile Research, 2020, 41(02): 13-19. |
[10] | ZHANG Zhibin, LI Gang, MAO Senxian, LI Xunxun, CHEN Yushuang, MAO Qingshan, LI Yi, PAN Zhijuan, WANG Xiaoqin. Preparation and antibacterial activity of silk fibroin/chitosan microspheres [J]. Journal of Textile Research, 2019, 40(10): 7-12. |
[11] | BAO Hong, XU Shui, ZHANG Xiaoning, CHENG Guotao, ZHU Yong. Cationization of Bombyx mori silk fibroin and effect there of on wool traits [J]. Journal of Textile Research, 2019, 40(07): 24-30. |
[12] | LIN Yongjia, YANG Dongchao, ZHANG Peihua, GU Yan. Preparation and properties of regenerated silk fibroin/acellular dermal matrix blended nanofiber membrane [J]. Journal of Textile Research, 2019, 40(07): 13-18. |
[13] | WANG Zongqian, WANG Dengfeng, ZHOU Hang, LI Jun. Effect of ultrasonic assistance on morphology of silk fibroin microspheres prepared by emulsion cross-linking process [J]. Journal of Textile Research, 2019, 40(02): 119-124. |
[14] | . Phosphorylation of silk fibroin and preparation of biomimetic mineralization membrane thereof [J]. Journal of Textile Research, 2018, 39(11): 8-13. |
[15] | . Preparation and characterization of silk fibroin /polyvinyl alcohol composite membrane [J]. Journal of Textile Research, 2018, 39(11): 14-19. |
|