Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (08): 41-48.doi: 10.13475/j.fzxb.20200901308

• Fiber Materials • Previous Articles     Next Articles

Preparation and characterization of silk fibroin hydrogel in acid-alcohol system

LIU Hao1, LU Minglei1, HUANG Xiaowei1,2, WANG Na1,2, WANG Xuefang1,2, NING Xin2,3, MING Jinfa1,2,3()   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, Qingdao, Shandong 266071, China
    3. Shandong Special Nonwoven Materials Engineering Research Center, Qingdao, Shandong 266071, China
  • Received:2020-09-04 Revised:2021-04-28 Online:2021-08-15 Published:2021-08-24
  • Contact: MING Jinfa E-mail:mingjinfa@qdu.edu.cn

Abstract:

In order to achieve the controllable morphology of silk fibroin hydrogel and to improve the gelling speed and compression properties, a simple fabrication method for silk fibroin hydrogel in acid-alcohol system was developed. This paper reports the effect of alcohol with different mass ratio on the morphology, aggregation structure, thermal property and compressive property of hydrogel at the same acidic condition. The research explored the forming conditions for silk fibroin hydrogels, and the differences in structure and properties of hydrogel. The results show that the structure and properties of hydrogels are improved with increased use of alcohol, which also benefited the gelation time reduction from 12-14 h to 1 h. In relation to this, the morphology of hydrogel gradually changes from pore to fibrous state. Moreover, the crystallization structure of silk fibroin in hydrogels was found to be mainly β-sheet. When the mass ratio of alcohol was set to 5.0%, the fiber diameter reached (1.09±0.5) μm. The hydrogels demonstrated a compressive strength of (75.16±3.79) kPa at 60% strain in dry state, and the compression recovery rate reached 63% in wet state.

Key words: silk fibroin, hydrogel, acid-alcohol system, compression property, crystallization structure, medical material

CLC Number: 

  • TS109

Tab.1

Specification parameters of silk fibroin hydrogels"

样品
名称
SF质量
分数/%
乙醇质量
分数/%
温度/
冻干后成
形状况
SF-0 3 0.0 25 成形良好
SF-1 3 1.0 25 成形良好
SF-2.5 3 2.5 25 成形良好
SF-5 3 5.0 25 成形良好
SF-10 3 10.0 25 成形良好
SF-20 3 20.0 25 未成形

Fig.1

SEM images of SF hydrogels with different mass ratios of alcohol"

Fig.2

Raman pattern of SF hydrogels with different mass fraction of alcohol"

Fig.3

Secondary structure of SF hydrogels with different mass fraction of alcohol.(a)FT-IR spectra of SF hydrogels;(b)FT-IR peak fitting curve of SF-5 hydrogel in amide Ⅰ region;(c)Change of secondary structure of SF hydrogel in amide Ⅰ region"

Fig.4

XRD pattern of SF hydrogels with different mass fraction of alcohol"

Fig.5

DSC (a) and TG (b) curves of SF hydrogels prepared by different mass ratios of alcohol"

Fig.6

Compressive property of SF hydrogels in dry and wet state. (a) Compressive property in dry state; (b) Cyclic compressive property in wet state"

[1] 张叶敏. 双酶交联明胶/壳聚糖互穿网络生物水凝胶的制备与表征[D]. 南京:东南大学, 2015: 1-2.
ZHANG Yemin. Preparation and characterization of gelatin-chitosan IPN biohydrogels by bienzymatic crosslinking approach[D]. Nanjing: Southeast University, 2015: 1-2.
[2] JANANI Guru, KUMAR Manishekhar, CHOUHAN Dimple, et al. Insight into silk based biomaterials from physicochemical attributes to recent biomedical applications[J]. ACS Applied Bio Materials, 2019, 2:5460-5491.
doi: 10.1021/acsabm.9b00576
[3] 李加乐, 谭云飞, 谭绪林, 等. 丝素蛋白水凝胶材料在组织工程中的应用研究进展[J]. 材料导报, 2018, 32(S2):176-182.
LI Jiale, TAN Yunfei, TAN Xulin, et al. Research progress on the applications of silk fibroin hydrogel in the tissue engineering[J]. Materials Reports, 2018, 32(S2):176-182.
[4] 周倩, 袁久刚, 李澜, 等. 丝素蛋白的磷酸化及其仿生矿化膜的制备[J]. 纺织学报, 2018, 39(11):8-13.
ZHOU Qian, YUAN Jiugang, LI Lan, et al. Phosphorylation of silk fibroin and preparation of biomimetic mineralization membrane thereof[J]. Journal of Textile Research, 2018, 39(11):8-13.
[5] GRIGORYAN B, PAULSEN S J, CORBETT D C, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science, 2019(364):458-464.
[6] HAN Yanxin, YANG Wenbo, CUI Wenguo, et al. Development of functional hydrogels for heart failure[J]. Journal of Materials Chemistry B, 2019(7):1563.
[7] LIU Bin, SONG Yuwei, JIN Li, et al. Silk structure and degradation[J]. Colloids and Surfaces B: Biointerfaces, 2015, 131:122-128.
doi: 10.1016/j.colsurfb.2015.04.040 pmid: 25982316
[8] 吴建兵, 张理想, 唐麒麟. 药物控释用丝素蛋白纳微米球的研究进展[J]. 丝绸, 2020, 57(5):6-10.
WU Jianbing, ZHANG Lixiang, TANG Qilin. Research progress of silk fibroin nano-microspheres for drug-controlled release[J]. Journal of Silk, 2020, 57(5):6-10.
[9] 吴锡龙. 再生丝素可注射原位水凝胶的制备与表征[D]. 苏州: 苏州大学, 2012:5-8.
WU Xilong. Preparation and characterization of injectable in-situ regenerated silk hydrogels[D]. Suzhou: Soochow University, 2012: 5-8.
[10] NAGAEKAR Shailesh, PATIL Avinash, LELE Ashish, et al. Some mechanistic insights into the gelation of regenerated silk fibroin sol[J]. Industrial & Engineering Chemistry Research, 2009, 48(17):8014-8023.
doi: 10.1021/ie801723f
[11] 孙广东, 黄益, 邵建中, 等. 光交联丝素蛋白水凝胶的蓝光引发体系[J]. 纺织学报, 2020, 41(4):64-71.
SUN Guangdong, HUANG Yi, SHAO Jianzhong, et al. Blue light initiated photocrosslinking of silk fibroin hydrogel[J]. Journal of Textile Research, 2020, 41(4):64-71.
[12] 张轩, 程远, 张小涵, 等. 再生丝素蛋白水凝胶的制备与改性[J]. 江苏丝绸, 2019(6):22-30.
ZHANG Xuan, CHENG Yuan, ZHANG Xiaohan, et al. Preparation and modification of regenerated silk fibroin hydrogels[J]. Jiangsu Silk, 2019(6):22-30.
[13] 陈宏武, 王曙东. 蚕丝蛋白水凝胶的研究现状[J]. 纺织学报, 2015, 36(11):156-163.
CHEN Hongwu, WANG Shudong. Research progress of silk fibroin hydrogels[J]. Journal of Textile Research, 2015, 36(11):156-163.
[14] 周燕, 吴惠英. 再生丝素蛋白水凝胶的性质及应用[J]. 丝绸, 2016, 53(4):29-34.
ZHOU Yan, WU Huiying. Property and application of regenerated silk fibroin hydrogels[J]. Journal of Silk, 2016, 53(4):29-34.
[15] KAPOOR S, KUNDU S C. Silk protein-based hydrogels: promising advanced materials for biomedical applications[J]. Acta Biomaterialia, 2016, 31:17-32.
doi: 10.1016/j.actbio.2015.11.034
[16] YUCEL T, KOJIC N, LEISK Gary G, et al. Non-equilibrium silk fibroin adhesives[J]. Journal of Structural Biology, 2010, 170:406-412.
doi: 10.1016/j.jsb.2009.12.012
[17] FLOREN M L, SPILIMBERGO S, MOTTA A, et al. Carbon dioxide induced silk protein gelation for biomedical applications[J]. Biomacromolecules, 2012, 13(7):2060-2072.
doi: 10.1021/bm300450a
[18] ZHANG Qiang, HAN Guocong, LU Chen, et al. Facile preparation of mechanical reinforced and biocompatible silk gels[J]. Fibers and Polymers, 2019, 20:675-682.
doi: 10.1007/s12221-019-1046-7
[19] 陈大旗, 付华, 殷祝平, 等. 丝素蛋白取向水凝胶的研制[J]. 丝绸, 2017, 54(8):1-7.
CHEN Daqi, FU Hua, YIN Zhuping, et al. Preparation of orientational silk fibroin hydrogels[J]. Journal of Silk, 2017, 54(8):1-7.
[20] LIU Jiawei, DING Zhaozhao, LU Guozhong, et al. Amorphous silk fibroin nanofiber hydrogels with enhanced mechanical properties[J]. Macromolecular Bioscience, 2019, 19:1900326.
doi: 10.1002/mabi.201900326 pmid: 31738015
[21] 郭小兰, 左保齐. 丝素蛋白基复合水凝胶的研究进展[J]. 丝绸, 2020, 57(6):45-51.
GUO Xiaolan, ZUO Baoqi. Research progress of silk fibroin-based composite hydrogels[J]. Journal of Silk, 2020, 57(6):45-51.
[22] LI Zhao, ZHENG Zhaokun, YANG Yuhong, et al. Robust protein hydrogels from silkworm silk[J]. ACS Sustainable Chemistry & Engineering, 2016, 4:1500-1506.
[23] CHEN Feng, LU Shaoping, ZHU Lin. Conductive regenerated silk-fibroin-based hydrogels with integrated high mechanical performances[J]. Journal of Materials Chemistry B, 2019, 7(10):1708-1715.
doi: 10.1039/c8tb02445f pmid: 32254912
[24] 钟红荣, 方艳, 包红, 等. 丝素基双层敷料的制备及其性能[J]. 纺织学报, 2020, 41(2):13-19.
ZHONG Hongrong, FANG Yan, BAO Hong, et al. Preparation and properties of silk fibroin based bilayer dressing materials[J]. Journal of Textile Research, 2020, 41(2):13-19.
[25] 王宗乾, 杨海伟, 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018, 39(4):69-76.
WANG Zongqian, YANG Haiwei, WANG Dengfeng. Influence of degumming on solution of silk fiber and property of fibroin[J]. Journal of Textile Research, 2018, 39(4):69-76.
[26] PANG Liaoliao, MING Jinfa, PAN Fukui, et al. Fabrication of silk fibroin fluorescent nanofibers via electrospinning[J]. Polymers, 2019, 11:986.
doi: 10.3390/polym11060986
[27] 陈佳弘, 江虹锐, 余炼, 等. 丝素蛋白在氯化钙-乙醇-水体系中的溶解行为及其结构的变化[J]. 现代食品科技, 2017, 33(9):37-45.
CHEN Jiahong, JIANG Hongrui, YU Lian, et al. Dissolution behavior and structural changes of silk fibroin in calcium chloride-ethanol-water solvent systems[J]. Modern Food Science and Technology, 2017, 33(9):37-45.
[28] 何志朋. 环境诱导丝素蛋白构象转变的红外光谱及丝素蛋白复合膜的研究[D]. 苏州: 苏州大学, 2018: 10-20.
HE Zhipeng. Investigation on environmental-variation induced conformational transition of silk fibroin with FTIR and properties of silk fibroin blend film[D]. Suzhou: Soochow University, 2018: 10-20.
[29] NUMATA Keiji, KATASHIMA Takuya, SAKAI Takamasa. State of water, molecular structure, and cytotoxicity of silk hydrogels[J]. Biomacromolecules, 2011, 12(6):2137.
doi: 10.1021/bm200221u
[30] 王心如, 邹盛之, 冯文庆, 等. 乙醇诱导的柞蚕丝素蛋白多孔材料的研究[J]. 丝绸, 2018, 55(10):1-8.
WANG Xinru, ZOU Shengzhi, FENG Wenqing, et al. Studies on antheraea pernyi silk fibroin porous materials induced by ethanol[J]. Journal of Silk, 2018, 55(10):1-8.
[31] 王宗乾, 杨海伟, 周剑, 等. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(4):9-14.
WANG Zongqian, YANG Haiwei, ZHOU Jian, et al. Effect of urea degumming on mechanical properties of silk fibroin aerogels[J]. Journal of Textile Research, 2020, 41(4):9-14.
[32] LÓRENZ-FONFRIA V A, PADRÓS E. Curve-fitting of fourier manipulated spectra comprising apodization, smoothing, derivation and deconvolution[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60:2703-2710.
doi: 10.1016/j.saa.2004.01.008
[33] 刘明. FTIR对丝素蛋白构象的研究[D]. 杭州:浙江大学, 2006: 10-14.
LIU Ming. Study on the conformation of silk fibroin by FTIR[D]. Hangzhou: Zhejiang University, 2006: 10-14.
[34] JIN H, KAPLAN D L. Mechanism of silk processing in insects and spiders[J]. Nature, 2003, 424:1057-1061.
doi: 10.1038/nature01809
[35] MING Jinfa, LI Mengmeng, HAN Yuhui, et al. Novel two-step method to form silk fibroin fibrous hydro-gel[J]. Materials Science & Engineering C, 2016, 59:185-192.
[36] 徐梦洁, 张秀梅, 胡银春, 等. 双交联聚乙烯醇/海藻酸钠水凝胶的制备与表征[J]. 高分子材料科学与工程, 2020, 36(4):55-60,66.
XU Mengjie, ZHANG Xiumei, HU Yinchun, et al. Preparation and characterization of double crosslinked polyvinyl alcohol/sodium alginate hydrogels[J]. Polymer Materials Science & Engineering, 2020, 36(4):55-60,66.
[37] WAGN K, LI R, MA J H, et al. Extracting keratin from wool by using L-cysteine[J]. Green Chemistry, 2016, 18(2):476-481.
doi: 10.1039/C5GC01254F
[38] 闻荻江, 王辉, 朱新生, 等. 丝素蛋白的构象与结晶性[J]. 纺织学报, 2005, 26(1):110-112.
WEN Dijiang, WANG Hui, ZHU Xinsheng, et al. Conformation and crystallinity of silk fibroin[J]. Journal of Textile Research, 2005, 26(1):110-112.
[1] SUN Yusheng, ZUO Baoqi. Research progress of high-molecular polymer material for bone defect repair [J]. Journal of Textile Research, 2021, 42(08): 175-184.
[2] DING Mengyao, DAI Mengnan, LI Meng, LIU Ping, XU Jingjing, WANG Jiannan. Separation and characterization of silk fibroin with different molecular weight [J]. Journal of Textile Research, 2021, 42(07): 46-53.
[3] YANG Ya, YAN Fengyi, WANG Hui, ZHANG Keqin. Protein adsorption and cell response on bio-interfaces of silk fibroin/octacalcium phosphate composites [J]. Journal of Textile Research, 2021, 42(02): 41-46.
[4] SHENG Mingfei, WANG Wanning, ZHANG Liping, FU Shaohai. Preparation and properties of continuously produced electric-responsive liquid crystal fibers [J]. Journal of Textile Research, 2021, 42(02): 27-33.
[5] CAO Genyang, WANG Yunli, SHENG Dan, PAN Heng, XU Weilin. Promotion mechanism of color fastness to sublimation in thermovacuum environmental conditions for fibroin powder/pigment complex [J]. Journal of Textile Research, 2021, 42(02): 1-6.
[6] SONG Guangzhou, TU Fangfang, DING Mengyao, DAI Mengnan, YIN Yin, DONG Fenglin, WANG Jiannan. Negatively enhanced modification of silk fibroin and its load ability to calcitonin gene-related peptide [J]. Journal of Textile Research, 2020, 41(12): 7-12.
[7] WANG Shudong, MA Qian, WANG Ke, QU Caixin, QI Yu. Structure and biocompatibility of silk fibroin/gelatin blended hydrogels [J]. Journal of Textile Research, 2020, 41(11): 41-47.
[8] YAN Jia, LI Gang. Research progress on medical textiles [J]. Journal of Textile Research, 2020, 41(09): 191-200.
[9] QIN Yimin. Clinical applications of silver containing alginate wound dressings [J]. Journal of Textile Research, 2020, 41(09): 183-190.
[10] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
[11] SUN Guangdong, HUANG Yi, SHAO Jianzhong, FAN Qinguo. Blue light initiated photocrosslinking of silk fibroin hydrogel [J]. Journal of Textile Research, 2020, 41(04): 64-71.
[12] ZHONG Hongrong, FANG Yan, BAO Hong, WU Tingfang, ZHANG Xiaoning, XU Shui, ZHU Yong. Preparation and properties of silk fibroin based bilayer dressing materials [J]. Journal of Textile Research, 2020, 41(02): 13-19.
[13] LI Sijie, ZHANG Caidan. Preparation of poly(aspartic acid) based fiber hydrogel and its drug release behavior [J]. Journal of Textile Research, 2020, 41(02): 20-25.
[14] ZHANG Xiaohui, YANG Tong, MA Pibo. Preparation and compression properties of bamboo-structure hollow monofilaments by 3D printing [J]. Journal of Textile Research, 2019, 40(12): 32-38.
[15] CUI Yifan, HOU Wei, ZHOU Qianxi, YAN Jun, LU Yanhua, HE Tingting. Influence of silk sericin temperature sensitive hydrogel on properties of cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 74-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!