Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (08): 76-83.doi: 10.13475/j.fzxb.20201100108

• Textile Engineering • Previous Articles     Next Articles

Microstructure characterization of multi-layer interlocked woven preforms based on quadratic functions

REN Libing1,2, CHEN Li1,2(), JIAO Wei1,2   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composites Materials, Ministry of Education, Tiangong University, Tianjin 300387, China
  • Received:2020-11-02 Revised:2021-03-12 Online:2021-08-15 Published:2021-08-24
  • Contact: CHEN Li E-mail:chenli@tiangong.edu.cn

Abstract:

The relationship between the structural parameters of textile preforms is a key factor to the design of high-performance composite materials. In order to establish the microstructural relationship of the multi-layer interlocked woven preform, the assumptions that the weft cross section is a parabolic biconvex lens and the warp path is a parabolic wave based on the quadratic function were proposed through microscopic observation and structural analysis. The multi-layer interlocked woven preform with the typical layer-to-layer interlocked plain woven structure was studied and a through-thickness cell model was established. Then the relationship between the microstructure parameters was obtained, and the variation coefficient of the yarn cross-section, preform thickness and fiber volume fraction were able to be calculated. Then the microstructure of preforms was designed through above analysis and calculation. The validity and rationality of the microstructural model were verified through the comparison between the experimental data and the theoretical results. The yarn packing factor of the multi-layer interlocked woven preform was confirmed in the range of 0.73 to 0.87.

Key words: multi-layer interlocked woven preform, microstructure, structure parameter, thickness, fiber volume fraction, composite material

CLC Number: 

  • TB332

Fig.1

Illustration of multi-layer interlocked woven preform"

Fig.2

Structure of multi-layer interlocked woven preform. (a) Surface structure; (b) Warp yarn paths in perform"

Fig.3

Mixed morphology path in multi-layer interlocked woven preform. (a) Micro-CT image of preform; (b) Warp weave cross-section; (c) Weft weave cross-section"

Fig.4

Yarn sectional shapes in multi-layer interlocked woven preform. (a) Weft cross-section; (b) Warp section"

Fig.5

Warp cross-sectional pattern"

Fig.6

Interior weft cross-sectional pattern of muti-layer interlocked woven perform"

Fig.7

Surface weft cross-sectional pattern of muti-layer interlocked woven perform"

Fig.8

Geometrical model of multi-layer interlocked woven preform"

Fig.9

Through-thickness cell model of multi-layer interlocked woven preform"

Tab.1

Structural parameters of multi-layer interlocked woven preforms"

预制体编号 经纱线密
度/tex
纬纱线密
度/tex
纱线体积密度/
(g·cm-3)
经密/
(根·cm-1)
纬密/
(根·cm-1)
经纱
层数
纬纱
层数
J8W2.50 890 890 1.79 8 2.50 10 11
J8W3.00 890 890 1.79 8 3.00 10 11
J8W3.15 890 890 1.79 8 3.15 9 10

Fig.10

Measured yarn cross-sectional size of multi-layer interlocked woven preform. (a) Warp cross-sectional sizes; (b) Interior weft cross-sectional sizes; (c) Surface weft cross-sectional sizes"

Tab.2

Yarn packing factors of multi-layer interlocked woven preforms"

预制体编号 S1/mm2 S2/mm2 S3/mm2 S/mm2 ε1 ε2 ε3
J8W2.50 0.660 7 0.667 1 0.666 1 0.497 2 0.750 0.745 0.746
J8W3.00 0.587 1 0.585 2 0.583 4 0.497 2 0.847 0.850 0.852
J8W3.15 0.603 7 0.602 5 0.602 8 0.497 2 0.824 0.825 0.825

Tab.3

Thickness and variation coefficient of warp yarn cross sections"

预制体
编号
横截面厚度W/mm 横截面变异系数μ/mm
实测值 理论值 文献[6]值 实测值 理论值 文献[6]值
J8W2.50 0.525 0.530 0.442 2.383 2.361 2.828
J8W3.00 0.473 0.468 0.442 2.647 2.678 2.828
J8W3.15 0.473 0.482 0.442 2.646 2.595 2.828

Tab.4

Thickness and variation coefficient of interior weft yarn cross sections"

预制体
编号
横截面厚度
D/mm
横截面变异
系数λ/mm
实测值 理论值 文献[6]值 实测值 理论值 文献[6]值
J8W2.50 0.537 0.529 0.533 3.634 3.559 2.857
J8W3.00 0.565 0.545 0.545 2.930 2.954 2.727
J8W3.15 0.580 0.575 0.542 2.763 2.736 2.691

Tab.5

Thickness and variation coefficient of surface weft yarn cross sections"

预制体
编号
横截面厚度
d/mm
横截面变异
系数τ/mm
实测值 理论值 文献[6]值 实测值 理论值 文献[6]值
J8W2.50 0.220 0.226 0.533 13.756 13.306 2.857
J8W3.00 0.229 0.236 0.545 11.567 10.752 2.727
J8W3.15 0.242 0.250 0.542 10.320 9.972 2.691

Tab.6

Thickness and fiber volume faction of multi-layer interlocked woven preforms"

预制体
编号
厚度 纤维体积含量
实测值/mm 理论值/mm 相对
误差/%
文献
[6]值/mm
文献[6]相
对误差/%
实测值/% 理论值/% 相对
误差/%
文献
[6]值/%
文献[6]相
对误差/%
J8W2.50 11.628 11.574 -0.46 11.164 -3.99 51.52 51.56 0.08 53.38 3.62
J8W3.00 10.978 10.989 0.10 11.295 2.89 58.31 58.36 0.07 58.28 -0.05
J8W3.15 10.522 10.401 -1.15 10.281 -2.29 58.01 57.47 -0.93 58.82 1.39

Tab.7

Thickness and fiber volume fraction of multi-layer interlocked woven preforms with different yarn packing factors"

预制体编号 经纬纱填
充因子ε
厚度 纤维体积含量
理论值/mm 实测值/mm 误差/% 理论值/% 实测值/% 误差/%
J8W2.50 0.700 12.431 11.628 6.91 48.67 51.52 -5.54
0.725 11.988 3.10 50.09 -2.77
0.750 11.575 -0.46 51.53 0.03
0.775 11.190 -3.77 52.98 2.83
0.800 10.831 -6.85 54.42 5.64
0.825 10.490 -9.79 55.90 8.50
0.850 10.174 -12.50 57.36 11.33
0.875 9.874 -15.08 58.83 14.19
0.900 9.595 -17.48 60.29 17.02
J8W3.00 0.700 13.482 10.978 22.81 50.02 58.31 -14.22
0.725 12.989 18.32 51.38 -11.88
0.750 12.532 14.16 52.75 -9.53
0.775 12.107 10.28 54.13 -7.17
0.800 11.710 6.67 55.51 -4.80
0.825 11.339 3.29 56.90 -2.42
0.850 10.991 0.12 58.30 -0.02
0.875 10.664 -2.86 59.70 2.38
0.900 10.357 -5.66 61.10 4.79

Fig.11

Variations of yarn packing factor and fiber volume fraction with yarn warp density (a) and weft density (b)"

[1] 周储伟, 喻溅鉴, 周光明. 三维机织复合材料的一种梁单元微观力学模型[J]. 复合材料学报, 2004(6):155-160.
ZHOU Chuwei, YU Jianjian, ZHOU Guangming. Micro beam model for 3D woven composite materials[J]. Acta Materiae Compositae Sinica, 2004(6):155-160.
[2] QUINN J P, HILL B J, MCILHAGGER R. An integrated design system for the manufacture and analysis of 3D woven preforms[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(7):911-914.
doi: 10.1016/S1359-835X(01)00007-0
[3] HOFSTEE J, KEULEN F V. 3D geometric modeling of a draped woven fabric[J]. Composite Structures, 2001, 54(2):179-195.
doi: 10.1016/S0263-8223(01)00087-3
[4] 邵明正. 层联机织复合材料微观结构建模与仿真[D]. 天津:天津工业大学, 2017: 7.
SHAO Mingzheng. Layer-interlocked woven composites micro structure modeling and simulation[D]. Tianjin:Tiangong University, 2017: 7.
[5] 杨彩云, 李嘉禄. 基于纱线真实形态的三维机织复合材料微观结构及其厚度计算[J]. 复合材料学报, 2005(6):178-182.
YANG Caiyun, LI Jialu. Microstructure and thickness equation of 3D woven composites based on yarn's true configuration[J]. Acta Materiae Compositae Sinica, 2005(6):178-182.
[6] 杨彩云. 三维角联锁结构复合材料的力学性能研究[D]. 天津:天津工业大学, 2005:17-20.
YANG Caiyun. Study on the mechanical properties of 3D angular interlocking structure composites[D]. Tianjin: Tiangong University, 2005:17-20.
[7] 郑君, 温卫东, 崔海涛, 等. 2.5维机织结构复合材料的几何模型[J]. 复合材料学报, 2008(2):143-148.
ZHENG Jun, WEN Weidong, CUI Haitao, et al. Geometric model of 2.5 dimensional woven struc-tures[J]. Acta Materiae Compositae Sinica, 2008(2):143-148.
[8] DONG W F, XIAO J, LI Y. Finite element analysis of the tensile properties of 2.5D braided composites[J]. Materials Science and Engineering: A, 2007, 457(1):199-204.
doi: 10.1016/j.msea.2006.12.032
[9] ZHANG D, WAAS A M, PANKOW M, et al. Flexural behavior of a layer-to-layer orthogonal interlocked three-dimensional textile composite[J]. Journal of Engineering Materials and Technology, 2012, 134(3):031009.
doi: 10.1115/1.4006501
[10] ZHANG D, CHEN L, WANG Y, et al. Finite element analysis of warp-reinforced 2.5D woven composites based on a meso-scale voxel model under compression loading[J]. Applied Composite Materials, 2017, 24(4):911-929.
doi: 10.1007/s10443-016-9565-5
[11] 陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8):62-72.
CHEN Li, JIAO Wei, WANG Xinmiao, et al. Research progress on mechanical properties of 3D woven composites[J]. Journal of Materials Engineering, 2020, 48(8):62-72.
[1] ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191.
[2] QIAO Cancan, JIANG Yaming, QI Yexiong, LIN Wenni, ZHANG Ye. Characterization of shock wave propagation in ceramic reinforced weft-knitted biaxial multilayer yarnlining fabric and woven fabrics composites [J]. Journal of Textile Research, 2021, 42(05): 84-89.
[3] XIAO Yuan, LI Hongying, LI Qian, ZHANG Wei, YANG Pengcheng. Preparation of flexible sensor with composite dielectric layer of cotton fabric/polydimethylsiloxane [J]. Journal of Textile Research, 2021, 42(05): 79-83.
[4] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[5] LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189.
[6] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[7] LIU Jie, TONG Shenglu, LI Xiaoduan, LIU Liguo, HE Jiahao, LI Wenbin, XIONG Rihua. Application of textile in evaporation treatment of saline wastewater [J]. Journal of Textile Research, 2020, 41(08): 81-87.
[8] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[9] CHEN Lifu, YU Weidong. Stab resistance of composites with synthetic diamond filled polyimide resin matrix [J]. Journal of Textile Research, 2020, 41(05): 38-44.
[10] LI Peng, WAN Zhenkai, JIA Minrui. Damage monitoring of composite materials based on twist energy of carbon nanotube yarns [J]. Journal of Textile Research, 2020, 41(04): 58-63.
[11] ZHANG Hengyu, ZHANG Xiansheng, XIAO Hong, SHI Meiwu. Research progress of two-dimensional carbide in field of flexible electromagnetic absorbing [J]. Journal of Textile Research, 2020, 41(03): 182-187.
[12] LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, CHEN Guoqiang, XING Tieling. Preparation and electrochemical properties of MnO2/graphene/cotton fabric composite electrode [J]. Journal of Textile Research, 2020, 41(01): 96-101.
[13] BAI He, QIAN Xiaoming, FAN Jintu, QIAN Yao, LIU Yongsheng, WANG Xiaobo. Theoretical model for number of fiber contacts in fibrous porous materials [J]. Journal of Textile Research, 2019, 40(12): 21-26.
[14] WANG Xianfeng, GAO Tiancheng, XIAO Jun. Research progress of stitching technology of composite materials [J]. Journal of Textile Research, 2019, 40(12): 169-177.
[15] WANG Xu, DU Zengfeng, WANG Cuie, NI Qingqing, LIU Xinhua. Parametric three-dimensional modeling on through-thickness orthogonal woven fabric structure [J]. Journal of Textile Research, 2019, 40(11): 57-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!