Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (08): 8-16.doi: 10.13475/j.fzxb.20210301109

• Academic Salon Column for New Insight of Textile Science and Technology: Recycling and Biodegradable Fiber • Previous Articles     Next Articles

Progress in preparation and structure-property relationship of bio-based polyesters of isohexides

WANG Yaning1,2, ZHOU Chufan2, WU Jing1,3(), WANG Huaping2,3   

  1. 1. Co-Innovation Center for Textile Industry, Donghua University, Shanghai 201620, China
    2. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
  • Received:2021-03-01 Revised:2021-05-17 Online:2021-08-15 Published:2021-08-24
  • Contact: WU Jing E-mail:wuj@dhu.edu.cn

Abstract:

As a family of diols derived from carbohydrates, isohexides are promising building blocks for preparation of new bio-based and biodegradable polymers due to their attractive properties including high rigidity, chirality, hydrophilicity and low toxicity. In this review, a few types of isohexide-based aliphatic and semi-aromatic homo- and co-polyesters extensively studied in recent years were systematically discussed in terms of their synthesis, thermal properties, physical properties, biodegradability and potential applications. Furthermore, the polymerization process for higher efficiency and the structure-property relationship of these polyesters were also examined. It can be concluded that the introduction of isohexides building blocks effectively increases the glass transition temperature of polymers and promote the ability of hydrolysis and biodegradation, thus offering great potential in the construction of environmentally friendly polyesters which are expected to be used in engineering plastics, fibers, biomedical fields, and so on. It is pointed out that the large-scale commercialization of such bio-based polyesters requires further development of more efficient and mild polymerization process to overcome the problems in heat sensitivity and thermal degradation.

Key words: bio-based material, biodegradable material, polyester, isohexide, isosorbide, structure-property relationship

CLC Number: 

  • TQ323

Fig.1

Three isomers of isohexides. (a)Isosorbide; (b)Isomannide;(c)Isoidide"

Fig.2

Synthetic route of polyesters based on isohexides and aliphatic dicarboxylic acid chlorides"

Fig.3

Synthetic route of polyesters based on isosorbide and dicarboxylic acids with different chain lengths"

Fig.4

Chemical structures and synthetic routes of typical copolyesters based on isosorbide"

Fig.5

Synthesis of copolyesters with isosorbide, succinic acid and different diols"

Fig.6

SEM images of PCIT(a) and 14% PEICT (b) nanofibers"

Fig.7

TEM images of 10% PCIT/honey (a) and 5% ZnO/PCIT (b) nanofibers"

[1] KOLLER M, BRAUNEGG G. Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion[J]. The EuroBiotech Journal, 2018, 2(2):89.
doi: 10.2478/ebtj-2018-0013
[2] SINGH N, HUI D, SINGH R, et al. Recycling of plastic solid waste: a state of art review and future applications[J]. Composites Part B: Engineering, 2017, 115(4):409-422.
doi: 10.1016/j.compositesb.2016.09.013
[3] HAIDER T P, VÖLKER C, KRAMM J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie International Edition, 2019, 58(1):50-62.
doi: 10.1002/anie.201805766
[4] EMADIAN S M, ONAY T T, DEMIREL B. Biodegradation of bioplastics in natural environ-ments[J]. Waste Management, 2017, 59(5):26-36.
[5] LI L, LUO Y, LI R, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11):929-937.
doi: 10.1038/s41893-020-0567-9
[6] ACKERMAN F. Waste management and llimate change[J]. Local Environment, 2000, 5(2):223-229.
doi: 10.1080/13549830050009373
[7] ROSE M, PALKOVITS R. Isosorbide as a renewable platform chemical for versatile applications:quo vadis[J]. ChemSusChem, 2012, 5(1):167-176.
doi: 10.1002/cssc.201100580
[8] LICHTENTHALER F W, PETERS S. Carbohydrates as green raw materials for the chemical industry[J]. Comptes Rendus Chimie, 2004, 7(2):65-90.
doi: 10.1016/j.crci.2004.02.002
[9] WU J, EDUARD P, THIYAGARAJAN S, et al. Isohexide derivatives from renewable resources as chiral building blocks[J]. ChemSusChem, 2011, 4(5):599-603.
doi: 10.1002/cssc.v4.5
[10] GALBIS J A, GARCIA-MARTIN M D G, PAZ M V D, et al. Synthetic polymers from sugar-based monomers[J]. Chem Rev, 2016, 116(3):1600-1636.
doi: 10.1021/acs.chemrev.5b00242
[11] 虞小三, 王鸣义. 生物基芳香族聚酯的工业化技术及产品应用前景[J]. 石油化工技术与经济, 2019, 35(3):57-61.
YU Xiaosan, WANG Mingyi. Industrial technology and application prospect of bio-based aromatic poly-esters[J]. Techno-Economics in Petrochemicals, 2019, 35(3):57-61.
[12] ZAKHAROVA E, MARTINEZ D I A, LEON S, et al. Sugar-based bicyclic monomers for aliphatic polyesters: a comparative appraisal of acetalized alditols and isosorbide[J]. Des Monomers Polym, 2017, 20(1):157-166.
doi: 10.1080/15685551.2016.1231038
[13] QI J, WU J, CHEN J, et al. An investigation of the thermal and (bio)degradability of PBS copolyesters based on isosorbide[J]. Polymer Degradation and Stability, 2019, 160:229-241.
doi: 10.1016/j.polymdegradstab.2018.12.031
[14] CHATTI S, WEIDNER S M, FILDIER A, et al. Copolyesters of isosorbide, succinic acid, and isophthalic acid: biodegradable, high Tg engineering plastics[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2013, 51(11):2464-2471.
doi: 10.1002/pola.v51.11
[15] CAOUTHAR A, ROGER P, TESSIER M, et al. Synjournal and characterization of new polyamides derived from di(4-cyanophenyl)isosorbide[J]. European Polymer Journal, 2007, 43(1):220-230.
doi: 10.1016/j.eurpolymj.2006.08.012
[16] QIAN W, LIU L, ZHANG Z, et al. Synjournal of bioderived polycarbonates with adjustable molecular weights catalyzed by phenolic-derived ionic liquids[J]. Green Chemistry, 2020, 22(8):2488-2497.
doi: 10.1039/D0GC00493F
[17] SAXON D J, LUKE A M, SAJJAD H, et al. Next-generation polymers: isosorbide as a renewable alternative[J]. Progress in Polymer Science, 2020, 101:101196.
doi: 10.1016/j.progpolymsci.2019.101196
[18] FENOUILLOT F, ROUSSEAU A, COLOMINES G, et al. Polymers from renewable 1,4∶3,6-dianhydro-hexitols (isosorbide, isomannide and isoidide): a review[J]. Progress in Polymer Science, 2010, 35(5):578-622.
doi: 10.1016/j.progpolymsci.2009.10.001
[19] CECUTTI C, MOULOUNGUI Z, GASET A. Synjournal of new diesters of 1,4∶3,6-dianhydro-D-glucitol by esterification with fatty acid chlorides[J]. Bioresource Technology, 1998, 66(1):63-67.
doi: 10.1016/S0960-8524(97)00082-5
[20] MUÑOZ-GUERRA S, LAVILLA C, JAPU C, et al. Renewable terephthalate polyesters from carbohydrate-based bicyclic monomers[J]. Green Chem, 2014, 16(4):1716-1739.
doi: 10.1039/C3GC42394H
[21] PARK H S, GONG M S, KNOWLES J C. Synjournal and biocompatibility properties of polyester containing various diacid based on isosorbide[J]. J Biomater Appl, 2012, 27(1):99-109.
doi: 10.1177/0885328212447245
[22] WU J, THIYAGARAJAN S, GUERRA C F, et al. Isohexide dinitriles: a versatile family of renewable platform chemicals[J]. ChemSusChem, 2017, 10(16):3202-3211.
doi: 10.1002/cssc.201700617
[23] YOON W J, OH K S, KOO J M, et al. Advanced polymerization and properties of biobased high Tg polyester of isosorbide and 1,4-cyclohexanedicarboxylic acid through in situ acetylation[J]. Macromolecules, 2013, 46(8):2930-2940.
doi: 10.1021/ma4001435
[24] BRAUN D, BERGMANN M. 1,4∶3,6-dianhydrohexite als bausteine für polymere[J]. Advanced Synjournal & Catalysis, 1992, 334(4):298-310.
[25] OKADA M, OKADA Y, AOI K. Synjournal and degradabilities of polyesters from 1,4∶3,6-dianhydrohexitols and aliphatic dicarboxylic acids[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1995, 33(16):2813-2820.
doi: 10.1002/pola.1995.080331615
[26] JUAIS D, NAVES A F, LI C, et al. Isosorbide polyesters from enzymatic catalysis[J]. Macromolecules, 2010, 43(24):10315-10319.
doi: 10.1021/ma1013176
[27] OKADA M, OKADA Y, TAO A, et al. Biodegradable polymers based on renewable resources: polyesters composed of 1,4∶3,6-dianhydrohexitol and aliphatic dicarboxylic acid units[J]. Journal of Applied Polymer Science, 1996, 62(13):2257-2265.
doi: 10.1002/(ISSN)1097-4628
[28] OKADA M, TSUNODA K, TACHIKAWA K, et al. Biodegradable polymers based on renewable resources: IV: enzymatic degradation of polyesters composed of 1,4∶3.6-dianhydro-D-glucitol and aliphatic dicarboxylic acid moieties[J]. Journal of Applied Polymer Science, 2000, 77(2):338-346.
doi: 10.1002/(ISSN)1097-4628
[29] KUMAR A, GROSS R A. Candida antartica lipase B catalyzed polycaprolactone synjournal: effects of organic media and temperature[J]. Biomacromolecules, 2000(1):133-138.
[30] XU J, GUO B H. Poly(butylene succinate) and its copolymers: research, development and industrializa-tion[J]. Biotechnology Journal, 2010, 5(11):1149-1163.
doi: 10.1002/biot.v5.11
[31] XU J, GUO B H. Poly(butylene succinate) and its copolymers: research, development and industrializa-tion[J]. Biotechnology Journal, 2010, 5(11):1149-1163.
doi: 10.1002/biot.v5.11
[32] 段荣涛, 董雪, 李德福, 等. 含异山梨醇的全生物基PBS嵌段共聚酯的制备及性能[J]. 高分子学报, 2016(1):70-77.
DUAN Rongtao, DONG Xue, LI Defu, et al. Preparation and properties of bio-based PBS multiblock copolyesters containing isosorbide units[J]. Acta Polymerica Sinica, 2016(1):70-77.
[33] CARETTO A, PASSONI V, BRENNA N, et al. Fully biobased polyesters based on an isosorbide monomer for coil coating applications[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):14125-14134.
[34] NOORDOVER B A J, VAN S V G, DUCHATEAU R, et al. Co- and terpolyesters based on isosorbide and succinic acid for coating applications: synjournal and characterization[J]. Biomacromolecules, 2006, 7(12):3406-3416.
doi: 10.1021/bm060713v
[35] KANG H, LI M, TANG Z, et al. Synjournal and characterization of biobased isosorbide-containing copolyesters as shape memory polymers for biomedical applications[J]. J Mater Chem B, 2014, 2(45):7877-7886.
doi: 10.1039/C4TB01304B
[36] 郑宁来. 2020年世界PET产销情况[J]. 聚酯工业, 2017, 30(2):4.
ZHENG Ninglai. World PET production and marketing in 2020[J]. Polyester Industry, 2017, 30(2):4.
[37] GOHIL R M. Properties and strain hardening character of polyethylene terephthalate containing isosorbide[J]. Polymer Engineering and Science, 2009, 49(3):544-553.
[38] DESCAMPS N, FERNANDEZ F, HEIJBOER P, et al. Isothermal crystallization kinetics of poly(ethylene terephthalate) copolymerized with various amounts of isosorbide[J]. Applied Sciences, 2020, 10(3):1046.
doi: 10.3390/app10031046
[39] LEE S Y, YANG D R, CHANG J W. Design of isosorbide crystallization process as recovery system for poly(ethylene-co-isosorbide) terephthalate production via solubility measurements and crystallization kinetic parameter estimation[J]. Journal of Industrial and Engineering Chemistry, 2020, 92:191-199.
doi: 10.1016/j.jiec.2020.09.004
[40] STANLEY N, CHENAL T, DELAUNAY T, et al. Bimetallic catalytic systems based on Sb, Ge and Ti for the synjournal of poly(ethylene terephthalate-co-isosorbide terephthalate)[J]. Polymers, 2017. DOI: 10.3390/polym9110590.
doi: 10.3390/polym9110590
[41] STANLEY N, CHENAL T, JACQUEL N, et al. Organocatalysts for the synjournal of poly(ethylene terephthalate-co-isosorbide terephthalate): a combined experimental and DFT study[J]. Macromolecular Materials and Engineering, 2019, 304(9) :1900298.
doi: 10.1002/mame.v304.9
[42] LI X G, SONG G, HUANG M R, et al. Cleaner synjournal and systematical characterization of sustainable poly(isosorbide-co-ethylene terephthalate) by environ-benign and highly active catalysts[J]. Journal of Cleaner Production, 2019, 206:483-497.
doi: 10.1016/j.jclepro.2018.09.046
[43] SABLONG R, DUCHATEAU R, KONING C E, et al. Incorporation of isosorbide into poly(butylene terephthalate) via solid-state polymerization[J]. Biomacromolecules, 2008, 9(11):3090-3097.
doi: 10.1021/bm800627d
[44] KRICHELDORF H R, BEHNKEN G, SELL M. Influence of isosorbide on glass-transition temperature and crystallinity of poly(butylene terephthalate)[J]. Journal of Macromolecular Science Part A: Pure and Applied Chemistry, 2007, 44(7-9):679-684.
doi: 10.1080/10601320701351128
[45] CHEN J, WU J, QI J, et al. Systematic study of thermal and (bio)degradable properties of semiaromatic copolyesters based on naturally occurring isosorbide[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1):1061.
[46] KOO J M, HWANG S Y, YOON W J, et al. Structural and thermal properties of poly(1,4-cyclohexane dimethylene terephthalate) containing isosorbide[J]. Polymer Chemistry, 2015, 6(39):6973-6986.
doi: 10.1039/C5PY01152C
[47] LEGRAND S, JACQUEL N, AMEDRO H, et al. Synjournal and properties of poly(1,4-cyclohexanedimethylene-co-isosorbide terephthalate), a biobased copolyester with high performances[J]. European Polymer Journal, 2019, 115:22-29.
doi: 10.1016/j.eurpolymj.2019.03.018
[48] YOON W J, HWANG S Y, KOO J M, et al. Synjournal and characteristics of a biobased high-Tg terpolyester of isosorbide, ethylene glycol, and 1,4-cyclohexane dimethanol: effect of ethylene glycol as a chain linker on polymerization[J]. Macromolecules, 2013, 46(18):7219-7231.
doi: 10.1021/ma4015092
[49] DUY-NAM P, LEE H, CHOI D, et al. Fabrication of two polyester nanofiber types containing the biobased monomer isosorbide: poly (ethylene glycol 1,4-cyclohexane dimethylene isosorbide terephthalate) and poly (1,4-cyclohexane dimethylene isosorbide terephthalate)[J]. Nanomaterials, 2018, 8(2):56.
doi: 10.3390/nano8020056
[50] LEE H, KOO J M, SOHN D, et al. High thermal stability and high tensile strength terpolyester nanofibers containing biobased monomer: fabrication and characterization[J]. RSC Advances, 2016, 6(46):40383-40388.
doi: 10.1039/C6RA02852G
[51] KHAN M Q, LEE H, KHATRI Z, et al. Fabrication and characterization of nanofibers of honey/poly(1,4-cyclohexane dimethylene isosorbide trephthalate) by electrospinning[J]. Materials Science & Engineering C:Materials for Biological Applications, 2017, 81:247-2451.
[52] KHAN M Q, LEE H, KOO J M, et al. Self-cleaning effect of electrospun poly(1,4-cyclohexanedimethylene isosorbide terephthalate) nanofibers embedded with zinc oxide nanoparticles[J]. Textile Research Journal, 2018, 88(21):2493-2498.
doi: 10.1177/0040517517723026
[53] WANG X, WANG Q, LIU S, et al. Synjournal and properties of poly(isosorbide 2,5-furandicarboxylate-co- ε-caprolactone) copolyesters[J]. Polymer Testing, 2020, 81:106284.
doi: 10.1016/j.polymertesting.2019.106284
[54] KASMI N, MAJDOUB M, PAPAGEORGIOU G Z, et al. Synjournal and crystallization of new fully renewable resources-based copolyesters: poly(1,4-cyclohexanedimethanol-co-isosorbide 2,5-furandicar-boxylate)[J]. Polymer Degradation and Stability, 2018, 152:177-190.
doi: 10.1016/j.polymdegradstab.2018.04.009
[1] LI Yanyan, LI Mengjuan, GE Mingqiao. Research progress on decolorization and recycling of colored polyester waste [J]. Journal of Textile Research, 2021, 42(08): 17-23.
[2] XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24.
[3] GU Weiwen, WANG Wenqing, WEI Lifei, SUN Chenying, HAO Dan, WEI Jianfei, WANG Rui. Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate) [J]. Journal of Textile Research, 2021, 42(07): 1-10.
[4] LI Fengyan, YE Tianyu, ZHAN Xiaoqing, ZHAO Jian, LI Danyang, WANG Rui. Preparation and properties of puncture-resistant fabrics made from polyester and aramid or ultrahigh molecular weight polyethylene compound yarns [J]. Journal of Textile Research, 2021, 42(07): 82-88.
[5] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[6] GUAN Zhenyu, ZHOU Wenle, ZHANG Yumei, WANG Huaping. Kinetic study on synthesis of bottle polyester using Ti-Mg catalyst [J]. Journal of Textile Research, 2021, 42(03): 64-70.
[7] MENG Lingling, WEI Qufu, YAN Zhongjie, ZHONG Zhenzhen, WANG Xiaohui, SHEN Jiayu, CHEN Hongwei. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering [J]. Journal of Textile Research, 2021, 42(03): 143-148.
[8] HUANG Di, LI Fang, LI Gang. Preparation and performance of polyester/silk woven heart valve [J]. Journal of Textile Research, 2021, 42(02): 74-79.
[9] JIN Linlin, TIAN Junkai, LI Jiawei, QI Dongming, SHEN Xiaowei, WU Chuntao. Synthesis and properties of biodegradable polyglycolic acid oligomer modified polyester [J]. Journal of Textile Research, 2021, 42(01): 16-21.
[10] SHAO Jingfeng, LI Ning, CAI Zaisheng. Parameters optimization on polyester drawn textured yarn based on fuzzy multi-criteria [J]. Journal of Textile Research, 2021, 42(01): 46-52.
[11] CHEN Kang, JIANG Quan, JI Hong, ZHANG Yang, SONG Minggen, ZHANG Yumei, WANG Huaping. Temperature related creep rupture mechanism of high-tenacity polyester industrial fiber [J]. Journal of Textile Research, 2020, 41(11): 1-9.
[12] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[13] CHEN Yong, WANG Jingjing, WANG Chaosheng, GU Donghua, WU Jing, WANG Huaping. Effect of oligomers on crystalline properties of polytrimethylene terephthalate [J]. Journal of Textile Research, 2020, 41(10): 1-6.
[14] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[15] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!