Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (09): 10-16.doi: 10.13475/j.fzxb.20210203507

• Invited Column:Intelligent fiber and products • Previous Articles     Next Articles

Application progress of two-dimensional transitional metal carbon/nitrogen compound composite in field of intelligent wearable textiles

RONG Kai1,2, FAN Wei1,2(), WANG Qi1,2, ZHANG Cong1,2, YU Yang1,2   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2021-02-15 Revised:2021-06-15 Online:2021-09-15 Published:2021-09-27
  • Contact: FAN Wei E-mail:fanwei@xpu.edu.cn

Abstract:

In view of the difficulty of traditional fibers in meeting the demand of current intelligent wearable devices, most existing composite fibers do not offer the appropriate electrical conductivity, mechanical properties, or energy storage capacity, this paper reviews the research progress in new two-dimensional transitional metal carbon/nitrogen compound (MXene) composite fibers used for intelligent wearables. Various preparation methods of MXene composite fibers (coating, double roll, electrospinning and wet spinning) were introduced, and the advantages as well as disadvantages of each method were analyzed. The applications of MXene composite fibers in electromagnetic shielding, supercapacitors, flexible sensors and other fields were systematically summarized. This paper also prospected the future development of MXene fibers in the field of intelligent wearable devices, providing new ideas for the research new generation of composite fibers with high electrical conductivity, excellent mechanical properties and high energy storage.

Key words: two-dimensional transitional metal carbon/nitrogen compound, intelligent wearable devices, electromagnetic shielding, supercapacitor, flexible sensor

CLC Number: 

  • TS102.6

Fig.1

SEM image of multilayer Ti3C2Tx-MXene"

Tab.1

Mechanical and electrochemical properties of MXene-based fibers, yarns and fabrics"

制备方法 基底材料 MXene负
载量/%
直径/
μm
抗拉强
度/MPa
电导率/
(S·m-1)
比电容 电磁强
度/dB
应变/
%
循环稳
定性/次
参考
文献
涂覆 棉纱线 77 610 458.4 198.5 长度比电容为758.5 mF/cm 20 2 000 [18]
棉纤维 79 200 面积比电容为707 mF/cm2 10 000 [19]
涤纶长丝 1 000 42 1 000 [20]
湿法纺丝 纤维素纳米纤维 50 50 86.8 211 5 500 [21]
聚氨酯溶液 9.1 230 5 997 152 1 000 [22]
纯MXene溶液 100 46 40.5 7 748 体积比电容为1 265 F/cm3 [23]
双辊法 双层碳纳米管 97 120 26.6 体积比电容为1 083 F/cm3 15 [24]
单层碳纳米管 95 56 38 体积比电容为92 F/cm3 7.50 [25]
静电纺丝 聚丙烯腈溶液 35 958 面积比电容为224 mF/cm2 [26]
聚己内酯溶液 2 1 600 [27]
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
doi: 10.1126/science.1102896
[2] NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30):10451-10453.
[3] CASTELLANOS-GOMEZ A, VICARELLI L, PRADA E, et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 2014, 1(2):025001.
doi: 10.1088/2053-1583/1/2/025001
[4] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37):4248-4253.
doi: 10.1002/adma.201102306
[5] GUO Z, ZHOU J, SI C, et al. Flexible two-dimensional Tin+1Cn(n=1,2 and 3) and their functionalized MXenes predicted by density functional theories[J]. Physical Chemistry Chemical Physics, 2015, 17(23):15348-15354.
doi: 10.1039/C5CP00775E
[6] KAZEMI S A, WANG Y. Super strong 2D titanium carbide MXene-based materials: a theoretical prediction[J]. Journal of Physics: Condensed Matter, 2019.DOI: 10.1088/1361-648X/ab5bd8.
doi: 10.1088/1361-648X/ab5bd8
[7] ZHANG C J, MCKEON L, KREMER M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors[J]. Nature Communications, 2019, 10(1):1-9.
doi: 10.1038/s41467-018-07882-8
[8] LAKHE P, PREHN E M, HABIB T, et al. Process safety analysis for Ti3C2Tx MXene synjournal and processing[J]. Industrial & Engineering Chemistry Research, 2019, 58(4):1570-1579.
doi: 10.1021/acs.iecr.8b05416
[9] ZHANG C J, PINILLA S, MCEVOY N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes)[J]. Chemistry of Materials, 2017, 29(11):4848-4856.
doi: 10.1021/acs.chemmater.7b00745
[10] SEREDYCH M, SHUCK C E, PINTO D, et al. High-temperature behavior, surface chemistry of carbide MXenes studied by thermal analysis[J]. Chemistry of Materials, 2019, 31(9):3324-3332.
doi: 10.1021/acs.chemmater.9b00397
[11] ZHAO M Q, REN C E, LING Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J]. Advanced Materials, 2015, 27(2):339-345.
doi: 10.1002/adma.v27.2
[12] LI H, HOU Y, WANG F, et al. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene[J]. Advanced Energy Materials, 2017, 7(4):1601847.
doi: 10.1002/aenm.201601847
[13] BAO W, SU D, ZHANG W, et al. 3D Metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries[J]. Advanced Functional Materials, 2016, 26(47):8746-8756.
doi: 10.1002/adfm.v26.47
[14] ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synjournal and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017, 29(18):7633-7644.
doi: 10.1021/acs.chemmater.7b02847
[15] LI Y B, SHAO H, LIN Z F, et al. A general lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19(8):894.
doi: 10.1038/s41563-020-0657-0
[16] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516(7529):78-81.
doi: 10.1038/nature13970
[17] HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials, 2014, 26(7):2374-2381.
doi: 10.1021/cm500641a
[18] UZUN S, SEYEDIN S, STOLTZFUS A L, et al. Knittable and washable multifunctional MXene-coated cellulose yarns[J]. Advanced Functional Materials, 2019, 29(45):1905015.
doi: 10.1002/adfm.v29.45
[19] LEVITT A, HEGH D, PHILLIPS P, et al. 3D knitted energy storage textiles using MXene-coated yarns[J]. Materials Today, 2020, 34:17-29.
doi: 10.1016/j.mattod.2020.02.005
[20] WANG Q W, ZHANG H B, LIU J, et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Advanced Functional Materials, 2019, 29(7):1806819.
doi: 10.1002/adfm.v29.7
[21] CAO W T, MA C, MAO D S, et al. MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles[J]. Advanced Functional Materials, 2019, 29(51):1905898.
doi: 10.1002/adfm.v29.51
[22] SEYEDIN S, UZUN S, LEVITT A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles[J]. Advanced Functional Materials, 2020, 30(12):1910504.
doi: 10.1002/adfm.v30.12
[23] ZHANG J, UZUN S, SEYEDIN S, et al. Additive-free MXene liquid crystals and fibers[J]. ACS Central Science, 2020, 6(2):254-265.
doi: 10.1021/acscentsci.9b01217
[24] WANG Z, QIN S, SEYEDIN S, et al. High-performance biscrolled MXene/carbon nanotube yarn supercapacitors[J]. Small, 2018, 14(37):1802225.
doi: 10.1002/smll.v14.37
[25] YU C, GONG Y, CHEN R, et al. A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets[J]. Small, 2018, 14(29):1801203.
doi: 10.1002/smll.v14.29
[26] LEVITT A S, ALHABEB M, HATTER C B, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2019, 7(1):269-277.
doi: 10.1039/C8TA09810G
[27] AWASTHI G P, MAHARJAN B, SHRESTHA S, et al. Synjournal, characterizations, and biocompatibility evaluation of polycaprolactone-MXene electrospun fibers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586:124282.
doi: 10.1016/j.colsurfa.2019.124282
[28] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7):992-1005.
doi: 10.1002/adma.201304138
[29] WANG L H, TIAN M W, ZHANG Y Y, et al. Helical core-sheath elastic yarn-based dual strain/humidity sensors with MXene sensing layer[J]. Journal of Materials Science, 2020, 55(14):6187-6194.
doi: 10.1007/s10853-020-04425-9
[30] LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity[J]. Advanced Functional Materials, 2019, 29(44):1905197.
doi: 10.1002/adfm.v29.44
[31] YAN J F, MA Y A, ZHANG C K, et al. Polypyrrole-MXene coated textile-based flexible energy storage device[J]. RSC Advances, 2018, 8(69):39742-39748.
doi: 10.1039/C8RA08403C
[32] XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8):5298-5415.
doi: 10.1021/acs.chemrev.8b00593
[33] AGARWAL S, WENDORFF J H, GREINER A. Use of electrospinning technique for biomedical applica-tions[J]. Polymer, 2008, 49(26):5603-5621.
doi: 10.1016/j.polymer.2008.09.014
[34] TIWARI A P, JOSHI M K, LEE J, et al. Heterogeneous electrospun polycaprolactone/polyethylene glycol membranes with improved wettability, biocompatibility, and mineralization[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 520:105-113.
doi: 10.1016/j.colsurfa.2017.01.054
[35] PANT H R, NEUPANE M P, PANT B, et al. Fabrication of highly porous poly (epsilon-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning[J]. Colloids and Surfaces B:Biointerfaces, 2011, 88(2):587-592.
doi: 10.1016/j.colsurfb.2011.07.045
[36] RANGANATHAN S, BALAGANGADHARAN K, SELVAMURUGAN N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering[J]. International Journal of Biological Macromolecules, 2019, 133:354-364.
doi: 10.1016/j.ijbiomac.2019.04.115
[37] RAVNIK M, ALEXANDER G P, YEOMANS J M, et al. Three-dimensional colloidal crystals in liquid crystalline blue phases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(13):5188-5192.
[38] NAKAYAMA M, KAJIYAMA S, KUMAMOTO A, et al. Stimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions[J]. Nature Communications, 2018, 9:568.
doi: 10.1038/s41467-018-02932-7
[39] DAS N C, LIU Y Y, YANG K K, et al. Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding[J]. Polymer Engineering and Science, 2009, 49(8):1627-1634.
doi: 10.1002/pen.21384
[40] HUANG X, DAI B, REN Y, et al. Preparation and study of electromagnetic interference shielding materials comprised of Ni-Co coated on web-like biocarbon nanofibers via electroless deposition[J]. Journal of Nanomaterials, 2015, 2015:320306.
[41] HEMANTH N, KANDASUBRAMANIAN B. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review[J]. Chemical Engineering Journal, 2019, 392:123678.
doi: 10.1016/j.cej.2019.123678
[42] TAN C L, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9):6225-6331.
doi: 10.1021/acs.chemrev.6b00558
[43] BHIMANAPATI G R, LIN Z, MEUNIER V, et al. Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano, 2015, 9(12):11509-11539.
doi: 10.1021/acsnano.5b05556
[44] WANG H, FENG H B, LI J H. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage[J]. Small, 2014, 10(11):2165-2181.
doi: 10.1002/smll.201303711
[45] ZHANG C F, ANASORI B, SERAL-ASCASO A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance[J]. Advanced Materials, 2017, 29(36):1702678.
doi: 10.1002/adma.201702678
[46] ZHANG C, KREMER M P, SERAL-ASCASO A, et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks[J]. Advanced Functional Materials, 2018, 28(9):1705506.
doi: 10.1002/adfm.v28.9
[47] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2):16098.
doi: 10.1038/natrevmats.2016.98
[1] YE Chengwei, WANG Yi, XU Lan. Preparation and electrochemical properties of cobalt-based hierarchical porous composite carbon materials [J]. Journal of Textile Research, 2021, 42(08): 57-63.
[2] XIAO Yuan, LI Hongying, LI Qian, ZHANG Wei, YANG Pengcheng. Preparation of flexible sensor with composite dielectric layer of cotton fabric/polydimethylsiloxane [J]. Journal of Textile Research, 2021, 42(05): 79-83.
[3] ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45.
[4] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49.
[5] MENG Lingling, WEI Qufu, YAN Zhongjie, ZHONG Zhenzhen, WANG Xiaohui, SHEN Jiayu, CHEN Hongwei. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering [J]. Journal of Textile Research, 2021, 42(03): 143-148.
[6] YU Jia, XIN Binjie, ZHUO Tingting, ZHOU Xi. Preparation and characterization of Cu/polypyrrole-coated wool fabrics for high electrical conductivity [J]. Journal of Textile Research, 2021, 42(01): 112-117.
[7] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[8] WANG Jilong, LIU Yan, JING Yuanyuan, XU Qingli, QIAN Xiangyu, ZHANG Yihong, ZHANG Kun. Advances in fiber-based wearable electronic devices [J]. Journal of Textile Research, 2020, 41(12): 157-165.
[9] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[10] WANG Bo, FAN Lihua, YUAN Yun, YIN Yunjie, WANG Chaoxia. Preparation and electric storage performance of stretchable polypyrrole/cotton knitted fabric [J]. Journal of Textile Research, 2020, 41(10): 101-106.
[11] ZHANG Hengyu, ZHANG Xiansheng, XIAO Hong, SHI Meiwu. Research progress of two-dimensional carbide in field of flexible electromagnetic absorbing [J]. Journal of Textile Research, 2020, 41(03): 182-187.
[12] ZOU Lihua, XU Zhenzhen, SUN Yanyan, WANG Tairan, QIU Yiping. Influence of graphene oxide/polyaniline functional film on electromagnetic shielding property of cotton fabrics [J]. Journal of Textile Research, 2019, 40(08): 109-116.
[13] MIAO Runwu, JIN Lihua, WEI Qiyu, HAN Xiao, HONG Jianhan. Preparation and electromagnetic shielding property of conductive poly(p-phenylene terephamide) of reinforced composite materials [J]. Journal of Textile Research, 2019, 40(02): 100-104.
[14] . Research progress of wearable technology in textiles and apparels [J]. Journal of Textile Research, 2018, 39(12): 131-138.
[15] . Preparation and properties of polypyrrole/cotton anti-microwave radiation fabric [J]. Journal of Textile Research, 2018, 39(09): 95-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!