Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (10): 120-125.doi: 10.13475/j.fzxb.20201003506

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Effect of electro-spraying treatment on anti-pilling performance of wool fabrics

ZHOU Huiling1,2, ZHU Lisha1,2, WU Xiongying3, DING Xuemei1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design & Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai Customs, Shanghai 200135, China
  • Received:2020-10-20 Revised:2021-07-12 Online:2021-10-15 Published:2021-10-29
  • Contact: DING Xuemei E-mail:fddingxm@dhu.edu.cn

Abstract:

Wool fabrics are prone to fuzzing and pilling when they are worn by external forces. To deal with this problem, the electro-spraying technique capable of producing monodisperse micro liquid particles was used to treat wool fabrics. Commonly used finishing agents hydrogen peroxide and chitosan solution were employed in the experiments to explore the effects of finishing agent type, solution concentration and treatment time on anti-pilling performance of wool fabrics, and the morphological changes of the wool fabrics and fiber surfaces after electro-atomization finishing were observed by scanning electron microscope. The results show that the particles produced by electro-spraying chitosan solution encapsulates the surface of the wool fiber, and the anti-pilling result is increased by more than 1 level. After electro-spraying of hydrogen peroxide solution, a certain destructive effect was observed on the surface scales of the wool fiber, and the anti-pilling grade is increased by more than 0.5 level. Joint electro-spraying hydrogen peroxide and chitosan solution treatment to the wool fabrics for a long time (e.g. 240min) demonstrates the best anti-pilling effect.

Key words: electrospraying, wool fabric, anti-pilling, chitosan, hydrogen peroxide

CLC Number: 

  • TS101

Fig.1

Schematic diagram of electro-spraying experimental device"

Fig.2

Effect of chitosan mass fraction and treated time on anti-pilling performance of wool fabric"

Fig.3

Pilling of untreated sample and chitosan finished samples.(a) Untreated; (b) 1.0% chitosan treated 10 min; (c) 1.0% chitosan treated 60 min; (d) 1.0% chitosan treated 240 min"

Fig.4

Surface morphology of fibers after different chitosan concentration treatment(×1 000). (a) Untreated; (b) 0.1% chitosan treated 240 min; (c) 1.0% chitosan treated 240 min"

Fig.5

Surface morphology of wool fabric before and after chitosan solution treated(×200). (a) Untreated; (b) 1.0% chitosan treated 10 min; (c) 1.0% chitosan treated 240 min"

Fig.6

Effect of hydrogen peroxide concentration and treated time on anti-pilling performance of wool fabric"

Fig.7

Pilling of untreated sample and hydrogen peroxide finished samples.(a)Untreated; (b)3% H2O2 treated 60 min; (c)5% H2O2 treated 240 min"

Fig.8

Surface morphology of wool fibers before and after hydrogen peroxide solution treated (×3 000). (a) Untreated; (b) 5% H2O2 treated 10 min; (c) 5% H2O2 treated 240 min"

Fig.9

Anti-pilling rating results of wool fabricafter different waystreated"

Fig.10

Pilling of wool fabric with different treat ways. (a) 3% H2O2 treated 60 min; (b)0.4% chitosan treated 240 min; (c) Synergistic finished 240 min"

Fig.11

Surface morphology of wool fibers after synergistic finished 240 min with 3% hydrogen peroxide and 0.4% chitosan solution. (a) Chitosan coated fibers(×3 100); (b) Adhesion of secondary particles(×2 100)"

[1] 王艳, 刘阳, 贾心洁. 羊毛抗起毛起球整理工艺的研究进展[J]. 天津纺织科技, 2017(5):59-62.
WANG Yan, LIU Yang. JIA Xinjie. Review and prospect of the anti-pilling processing technology of wool[J]. Tianjin Textile Science Technology, 2017(5):59-62.
[2] 周爱晖, 范雪荣, 王强, 等. 预处理在羊毛酶法防毡缩中的作用[J]. 毛纺科技, 2008, 36(8):14-18.
ZHOU Aihui, FAN Xuerong, WANG Qiang, et al. Effects of pretreatment on wool shrink-resistance finishing with enzyme[J]. Wool Textile Journal, 2008, 36(8):14-18.
[3] 袁久刚, 王强, 范雪荣, 等. 离子液体/蛋白酶对羊毛表面的亲水化改性[J]. 纺织学报, 2010, 31(3):83-87.
YUAN Jiugang, WANG Qiang, FAN Xuerong, et al. Hydrophilic surface modification of wool by ionic liquid/protease treatment[J]. Journal of Textile Research, 2010, 31(3):83-87.
[4] 邓炳耀, 高卫东, 费燕娜. 常压等离子体处理对羊毛纤维表面性能的影响[J]. 毛纺科技, 2009, 37(12):17-19.
DENG Bingyao, GAO Weidong, FEI Yanna. Effect on surface properties of wool fiber treated with atmospheric pressure plasma[J]. Wool Textile Journal, 2009, 37(12):17-19.
[5] 陈怡秀, 赵群, 阎克路. 纤维素晶须在羊毛防毡缩整理中的应用[J]. 毛纺科技, 2013, 41(3) : 6-9.
CHEN Yixiu, ZHAO Qun, YAN Kelu. Application of cellulose whiskers on wool proofing shrink finishing[J]. Wool Textile Journal, 2013, 41(3) : 6-9.
[6] 宋伟新, 赵雪. 壳聚糖胍盐酸盐在羊毛织物抗皱整理中的应用[J]. 毛纺科技, 2018, 46(3):28-31.
SONG Weixin, ZHAO Xue. Study on crease resistant finishing process of chitosan guanidine hydrochloride for wool fabric[J]. Wool Textile Journal, 2018, 46(3):28-31.
[7] 花兆辉, 杨丹, 孙卫国. 等离子体/壳聚糖联合处理对羊毛防缩性能的影响[J]. 西安工程大学学报, 2011, 25(3):144-148.
HUA Zhaohui, YANG Dan, SUN Weiguo. The effect on shrink-resistance of wool fabric with plasma/chitosan co-processing[J]. Journal of Xi'an Polytechnic University, 2011, 25(3):144-148.
[8] WANG C X, DU M, LV J C, et al. Effect of wetting pretreatment on structure and properties of plasma induced chitosan grafted wool fabric[J]. Fibers & Polymers, 2015, 16(2):404-412.
[9] 谢珍, 杜壮, 阎克路. 蛋白酶和有机硅改性聚氨酯联合防毡缩工艺[J]. 毛纺科技, 2017, 45(9):27-33.
XIE Zhen, DU Zhuang, YAN Kelu. Anti-felting process of wool fabric by protease and polysiloxane modified waterborne polyurethane[J]. Wool Textile Journal, 2017, 45(9):27-33.
[10] 尹协振, 李芳. 电雾化、电纺丝和带电射流稳定性研究[J]. 力学与实践, 2009, 31(1):1-7.
YIN Xiezhen, LI Fang. Electrospraying, electrospinning and instability of electrified jets[J]. Mechanics in Engineering, 2009, 31(1):1-7.
[11] 张宝琪, 李振海, 张凌, 等. 凝水对纳米水离子装置净化效果影响探究[J]. 建筑热能通风空调, 2016, 35(12):41-44.
ZHANG Baoqi, LI Zhenhai, ZHANG Ling, et al. Discussion and research on performance effect of condensate water on nano-water ion purifier[J]. Building Energy & Environment, 2016, 35(12):41-44.
[12] 朱远杰, 李振海, 张宝琪, 等. 纳米水离子对异味去除效果的实验研究[J]. 建筑热能通风空调, 2018, 37(11):34-37.
ZHU Yuanjie, LI Zhenhai, ZHANG Baoqi, et al. An experimental study on the removal of odor by nano water ion generator[J]. Building Energy & Environment, 2018, 37(11):34-37.
[13] VAZE Nachiket, PYRGIOTAKIS Georgios, MENA Lucas, et al. A nano-carrier platform for the targeted delivery of nature-inspired antimicrobials using engineered water nanostructures for food safety applications[J]. Food Control, 2019, 96:365-374.
doi: 10.1016/j.foodcont.2018.09.037 pmid: 32132770
[14] VAZE Nachiket, JIANG Yi, MENA Lucas, et al. An integrated electrolysis-electrospray-ionization antimicrobial platform using engineered water nanostructures (EWNS) for food safety applications[J]. Food Control, 2018, 85:151-160.
doi: 10.1016/j.foodcont.2017.09.034 pmid: 29332999
[15] PYRGIOTAKIS Georgios, VEDANTAM Pallavi, CIRENZA Caroline, et al. Optimization of a nanotechnology based antimicrobial platform for food safety applications using engineered water nanostructures (EWNS)[J]. Sci Rep, 2016, 6:21073.
doi: 10.1038/srep21073
[16] WAITS C M, HANRAHAN B, LEE I. Multiplexed electrospray scaling for liquid fuel injection[J]. Journal of Micromechanics and Microengineering, 2010, 20(10):104-110.
[17] 李星光, 刘建河, 许晏铭. 静电雾化技术在农药喷洒中的应用研究[J]. 新型工业化, 2017, 7(9):53-57.
LI Xingguang, LIU Jianhe, XU Yanming. Study on application of pesticide spraying by electrostatic atomization technology[J]. The Journal of New Industrialization, 2017, 7(9):53-57.
[18] 施丽君, 周涓, 朱君, 等. 静电雾化技术在生物医药材料中的应用[J]. 材料导报, 2013, 27(13):138-144.
SHI Lijun, ZHOU Juan, ZHU Jun, et al. Applications of electrospraying in biomedicine and biomaterials[J]. Materials Reports, 2013, 27(13):138-144.
[19] 赵扬, 姜佳昕, 陈冬阳, 等. 气辅式多射流纳米颗粒高效静电雾化喷射[J]. 光学精密工程, 2015, 23(4):1062-1069.
ZHAO Yang, JIANG Jiaxin, CHEN Dongyang, et al. High efficiency multi-jet electrospraying of nano particles with assisted gas[J]. Optics and Precision Engineering, 2015, 23(4):1062-1069.
doi: 10.3788/OPE.
[20] MIAO P, BALACHANDRAN W, XIAO P. Formation of ceramic thin films using electrospray incone-jet mode[J]. IEEE Transactions on Industry Applications, 2002, 38(1):50-56.
doi: 10.1109/28.980346
[21] 毛惠敏. 静电雾化沉积制备薄膜材料的研究[D]. 镇江:江苏大学, 2007: 1-46.
MAO Huimin. Research on the fabrication of thin-film materials by electrostatic spray deposition tech-niques[D]. Zhenjiang: Jiangsu University, 2007: 1-46.
[22] DASDEMIR Mehmet, IBILI Hatice. Formation and characterization of superhydrophobic and alcohol-repellent nonwovens via electrohydrodynamic atomiza-tion (electrospraying)[J]. Journal of Industrial Textiles, 2016, 47(1):125-146.
doi: 10.1177/1528083716639061
[23] GÜNESOGLU C, KUT Dilek, ORHAN Mehmet. Performing the electrospraying process for the application of textile nano finishing particles[J]. Textile Research Journal, 2009, 80(2):106-115.
doi: 10.1177/0040517509106108
[24] ISLAM Saniyat, JADHAV Amit, FANG Jian, et al. Surface deposition of chitosan on wool substrate by electrospraying[J]. Advanced Materials Research, 2011, 331:165-170.
doi: 10.4028/www.scientific.net/AMR.331
[25] 王海朋. 亲疏水改性聚己内酯及电喷法制备聚合物微球涂层整理棉织物[D]. 苏州:苏州大学, 2018:45-67.
WANG Haipeng. Hydrophilic and hydrophobic modification of PCL and preparation of microsphere on cotton fabric via electrospraying[D]. Suzhou: Soochow University, 2018:45-67.
[26] 陈维国, 关立平. 壳聚糖在羊毛表面的吸附性能研究[J]. 丝绸技术, 1999, 7(1):4-7.
CHEN Weiguo, GUAN Liping. Study on the adsorption properties of chitosan on wool surface[J]. Advanced Textile Technology, 1999, 7(1):4-7.
[1] . Research on flame retardant finishing of cotton fabric with tri-aminopropyl triethoxysilane [J]. , 2021, 42(10): 0-0.
[2] . Effect of electrospraying treatment on the anti-pilling performance of wool fabric [J]. , 2021, 42(10): 0-0.
[3] LIU Shuping, LI Liang, LIU Rangtong, HU Zedong, GENG Changjun. Flame retardant finishing of cotton fabric with tri-aminopropyl triethoxysilane [J]. Journal of Textile Research, 2021, 42(10): 107-114.
[4] ZHANG Fan, ZHANG Guobo, ZHAO Yuxin, ZHANG Ru, YANG Hai, WANG Shihao, WANG Nanfang. Application of catalytic oxidative soaping for polyester/cotton fabric dyeing in one bath [J]. Journal of Textile Research, 2021, 42(09): 97-103.
[5] PAN Jiajun, XIA Zhaopeng, ZHANG Haibao, LU Yang, ZHAO Jilin, WANG Xuenong, WANG Liang, LIU Yong. Optimization and mechanism of hydrogen peroxide/ammonium persulfate bleaching for yak wool [J]. Journal of Textile Research, 2021, 42(04): 101-106.
[6] HE Xuemei, MAO Haiyan, CAI Lu. Adsorption performance of chitosan based hybrid aerogel on reactive dyes [J]. Journal of Textile Research, 2021, 42(02): 148-155.
[7] YU Jia, XIN Binjie, ZHUO Tingting, ZHOU Xi. Preparation and characterization of Cu/polypyrrole-coated wool fabrics for high electrical conductivity [J]. Journal of Textile Research, 2021, 42(01): 112-117.
[8] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[9] XIANG Zhong, WANG Yuhang, WU Jinbo, QIAN Miao, HU Xudong. Research progress in detection of hydrogen peroxide concentration [J]. Journal of Textile Research, 2020, 41(10): 197-204.
[10] ZHANG Yimin, ZHOU Weitao, HE Jianxin, DU Shan, CHEN Xiangxiang, CUI Shizhong. Fabrication and properties of amidoxime-modified SiO2/polyacrylonitrile composite fibrous nonwovens [J]. Journal of Textile Research, 2020, 41(05): 25-29.
[11] LIU Leigen, SHEN Zhongan, LIN Zhenfeng, TAO Jin. Property and mechanism of poly(lactic acide)/chitosan/Fe3O4 superfine fibrous membrane adsorbing acid blue MTR [J]. Journal of Textile Research, 2020, 41(05): 20-24.
[12] ZHENG Hongfei, WANG Ruiqi, WANG Qing, ZHU Ying, XU Yunhui. Preparation and properties of antibacterial silk fabric modified with oxidized chitosan [J]. Journal of Textile Research, 2020, 41(05): 121-128.
[13] WANG Hao, DU Zhaofang, XU Yunhui. Preparation of oxidized chitosan/sericin composite and its functional finish on cotton fabrics [J]. Journal of Textile Research, 2019, 40(11): 119-124.
[14] ZHANG Zhibin, LI Gang, MAO Senxian, LI Xunxun, CHEN Yushuang, MAO Qingshan, LI Yi, PAN Zhijuan, WANG Xiaoqin. Preparation and antibacterial activity of silk fibroin/chitosan microspheres [J]. Journal of Textile Research, 2019, 40(10): 7-12.
[15] ZHANG Fan, ZHANG Ru, ZHOU Wenchang, ZHOU Hui, WANG Nanfang. Low-temperature bleaching of cotton knitted fabrics using hydrogen peroxide in presence of copper complex catalysts [J]. Journal of Textile Research, 2019, 40(08): 101-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!