Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (10): 180-189.doi: 10.13475/j.fzxb.20200702810

• Comprehensive Review • Previous Articles     Next Articles

Research progress of polymer embolic microspheres

LI Feng1, YANG Jiahao1, LAI Gengchang1, WANG Jiannan1,2, XU Jianmei1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. Key Laboratory of Silk Products for Medical and Health Use in Textile Industry, Soochow University, Suzhou, Jiangsu 215127, China
  • Received:2020-07-13 Revised:2021-01-20 Online:2021-10-15 Published:2021-10-29
  • Contact: XU Jianmei E-mail:xujianmei@suda.edu.cn

Abstract:

In order to promote the embolic polymer microspheres towards the direction of a higher drug-loading rate, controlled drug release, functionalization. Mechanism of embolic microspheres were reviewed, as well as the application of the polymer such as chitosan and alginate in the drug microspheres preparation. The embolic microsphere preparation methods such as emulsification cross-linking method, and ionic gelation method were introduced, as well as the different preparation characteristics of drug loaded microspheres for water-soluble and lipid-soluble drugs. Finally it is pointed out that the drug loading rate of the microspheres can be improved by selecting suitable carrier materials or multiple composite materials, so that the drug can be released in a controlled manner; suitable preparation methods of microspheres were selected to achieve high drug loading rate according to the characteristics of the loaded drugs; the future studies on embolic microspheres should be developed in the direction of multifunctionalization, such as microspheres with load targeted chemotherapy drugs, microspheres with targeting properties, microspheres that alleviate embolic pain or cancer pain, microspheres with photothermal effect, microspheres with controllable degradation rate, etc., providing reference and support for promoting the research and application of embolic microspheres in the treatment of tumors.

Key words: embolic microsphere, trancatheter arterial embolization, biocompatibility, drug loaded microsphere, microfluidic technique

CLC Number: 

  • TS101.4

Tab.1

Research on polymer embolic microspheres"

材料 药物 方法 粒径外形 交联剂 包封率
(载药率)/
%
研究结果
壳聚糖(CS) 5-FU 离子凝胶法 空白微球:30~60 nm,包封后粒径变大。圆形,光滑 多聚磷酸钠
(TPP)
微球分散性和稳定性好,粒径分布均一,缓释时间可达120 h[2]
平均6.40 μm,大小均一 77.80 对药物包封率高,突释小[3]
盐酸四环素 乳化交联法 5~50 μm,球形,表面光滑 甲醛/戊二醛 56.30
(26.90)
复合交联剂制备微球缓释性更好[4]
盐酸阿霉素 普通微球80.79 μm;高乙酰化微球81.25 μm。均为球形 高乙酰化微球载药率更高[16]
白藜芦醇 53~311 μm,表面光滑,颗粒不规则,内部有空隙 香草素 93.68 可使用多酚类化合物作为无毒交联剂[17]
罗素蝰蛇霉素 离子交联法 30~60 nm,球形 TPP TPP交联,分布均匀,离散性好[18]
牛至挥发油 离子凝胶/
乳化交联法
40~80 nm,球形,规则分布 TPP 空白微球比载药微球尺寸小,因团聚和溶胀,部分载药微球尺寸达到309~402 nm[19]
牛血清蛋白 膜乳化法 最小粒径0.40 μm 戊二醛/甲苯 微球的大小分布均匀[20]
西咪/法莫 喷雾干燥法 4~5 μm,光滑球形但变形 戊二醛/甲醛 药物释放快,并伴有爆释[21]
超顺磁性纳米粒 超声化学法 球形 微球可被检测到[22]
CS/丝素蛋白 牛血清白蛋白 乳化交联法 7.84 μm左右,规则光滑 京平尼 50.16
(1.25)
减少初期爆释,延长缓释时间 [ 7 ]
CS/Fe3O4 大约40 μm,规则球形 用作放射性核素靶向载体[23]
海藻酸钠 儿茶素 乳液凝胶法 41.48 用油性乳液凝胶法缓释效果更好[24]
CS/海藻酸钠 顺铂 乳化交联法 11.00 μm,球形规整 77.28
(19.93)
初期爆释减少,延长释放时间[25]
茶多酚 反相乳液法 500 nm左右,球形度较好 61.38
(22.71)
微球粒径均匀[26]
明胶/CS 茶多酚 自组装 规则球形,表面光滑 90.42
(26.82)
过程绿色,温和,简便[8]
阿司匹林 乳化交联法 球形规整圆滑 戊二醛 更有利于微球的圆滑和刚性[9]
酪蛋白磷酸肽/CS (+)-表没食子
儿茶素-3-没食
子酸酯
自组装 用于口服时,提高药物在肠道通透性和吸收能力[27]
磷脂酰胆碱/胆固醇 绿茶多酚 作为口服给药时提高药物稳定性和生物利用度,实现药物的缓释[28]
聚乙烯醇 微流控技术 均匀粒径,纳米结构 方法简单,经济,可行,双模成像[29]
聚丙烯酸 原位沉淀法 球形,表面光滑 微球可被灵敏检测到[30]
利多卡因 圆形,表面光滑 缓解栓塞引起的疼痛[15]
明胶 阿霉素 反相悬浮法 180~350 μm规则球形 突释小 [ 5 ]
多酚、京平尼 多酚交联剂优于京平尼且成本低 [ 6 ]
海藻酸钙 凝血酶 静电液滴 治疗引起的炎症随微球降解消失[31]
淀粉 阿霉素 乳液凝胶法
10~90 μm,表面多孔,不规则
用于晚期患者中也安全[32]
二氧化钛 多孔二氧化钛微球具有高载药量[33]

Fig.1

Preparation of bismuth sulfide nanoparticles microspheres"

[1] ZHAO J, LI Y S, LIU Z X, et al. Nanosized drug-eluting bead for transcatheter arterial chemoemboliza-tion(ND-TACE)[J]. Journal of Materials Chemistry B, 2020, 8(37):8684-8694.
doi: 10.1039/D0TB01295E
[2] 康卫卫. 5-FU-壳聚糖纳米粒的制备、检测及其对卵巢癌细胞的抑制作用[D]. 西安: 第四军医大学, 2013: 21-55.
KANG Weiwei. 5-fluorouracil-chitosan nanoparticles preparation, characterization and a preliminary study on their anticancer effects to human ovary epithelial cancer cell[D]. Xi'an: Fourth Military Medical University, 2013: 21-55.
[3] 杨春梅, 顾磊, 孙怡, 等. 离子交联法制备氟尿嘧啶壳聚糖微球[J]. 华东理工大学学报(自然科学版), 2010, 36(4):546-549.
YANG Chunmei, GU Lei, SUN Yi, et al. Preparation of fluorouracil-loaded chitosan microspheres using ion cross-linking technique[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2010, 36(4):546-549.
[4] 邵丽, 邓阳全, 吴旭, 等. 载药壳聚糖缓释微球的制备及其释放研究[J]. 功能材料, 2009, 40(6):959-961, 965.
SHAO Li, DENG Yangquan, WU Xu, et al. Prepare and release of the chitosan sustained-release drug microspheres[J]. Functional Materials, 2009, 40(6):959-961, 965.
[5] ZHANG L P, LIU M, QI T, et al. Preparations and properties of drug-eluting embolization microspheres based on modified gelatin[J]. Soft Materials, 2018, 16(2):117-125.
doi: 10.1080/1539445X.2018.1435552
[6] HUANG Y, LI A J, QIU C Y, et al. Self-assembled colloidal complexes of polyphenol-gelatin and their stabilizing effects on emulsions[J]. Food & Function, 2017, 8(9):3145-3154.
[7] 叶漫文, 方炜, 石勇, 等. 京尼平交联丝素蛋白-壳聚糖缓释微球的制备与表征[J]. 口腔疾病防治, 2016, 24(2):79-87.
YE Manwen, FANG Wei, SHI Yong, et al. Preparation and characterization of genipin-crosslinked silk fibroin/chitosan controlled release microspheres[J]. Prevention and Treatment of Oral Diseases, 2016, 24(2):79-87.
[8] 张茵, 孟晨, 常俊, 等. 自组装法制备茶多酚-明胶-壳聚糖纳米粒及其性质表征[J]. 中国药科大学学报, 2014, 45(2):178-184.
ZHANG Yin, MENG Chen, CHANG Jun, et al. Preparation and characterization of a self-assembled tea polyphenol-gelatin-chitosan nanoparticles[J]. Journal of China Pharmaceutical University, 2014, 45(2):178-184.
[9] 曲凤华, 栗明献, 陈微, 等. 壳聚糖微球及壳聚糖-明胶复合物微球的制备及缓释性能研究[J]. 化工科技, 2012, 20(3):43-48.
QU Fenghua, LI Mingxian, CHEN Wei, et al. A study on the preparation and sustained-releasing property of chitosan microsphere and chitosan-gelatine complex microsphere[J]. Science & Technology in Chemical Industry, 2012, 20(3):43-48.
[10] ZOU Q, HOU F L, WANG H, et al. Microfluidic one-step preparation of alginate microspheres encapsulated with in situ-formed bismuth sulfide nanoparticles and their photothermal effect[J]. European Polymer Journal, 2019, 115:282-289.
doi: 10.1016/j.eurpolymj.2019.03.040
[11] WENG L H, LE H C, LIN J Y, et al. Doxorubicin loading and eluting characteristics of bioresorbable hydrogel microspheres: in vitro study[J]. International Journal of Pharmaceutics, 2011, 409(1/2) : 185-193.
doi: 10.1016/j.ijpharm.2011.02.058
[12] CHOI M H, BLANCO A, STEALEY S, et al. Micro-clotting of platelet-rich plasma upon loading in hydrogel microspheres leads to prolonged protein release and slower microsphere degradation[J]. Polymers, 2020, 12(8):1712.
doi: 10.3390/polym12081712
[13] 肖文谦, 张静, 李克江, 等. 荔枝状CaCO3@HA/Fe3O4磁性介孔多级微球的制备[J]. 无机材料学报, 2019, 34(9):925-932.
XIAO Wenqian, ZHANG Jing, LI Kejiang, et al. Litchi-like superparamagnetic hydroxyapatite microspheres with hierarchically mesoporous microspheres[J]. Journal of Inorganic Materials, 2019, 34(9):925-932.
doi: 10.15541/jim20180497
[14] QIAO W, LAN X M, TSOI J K H, et al. Biomimetic hollow mesoporous hydroxyapatite microsphere with controlled morphology, entrapment efficiency and degradability for cancer therapy[J]. Royal Society of Chemistry Advances, 2017, 7(71):44788-44798.
[15] CUI D C, LU W L, SA E A, et al. Poly(acrylic acid) microspheres loaded with lidocaine: preparation and characterization for arterial embolization[J]. International Journal of Pharmaceutics, 2012, 436(1):527-535.
doi: 10.1016/j.ijpharm.2012.07.020
[16] WANG A H, CHEN X G, LIU C S, et al. Preparation and characteristics of chitosan microspheres in different acetylation as drug carrier system[J]. Journal of Microencapsulation, 2008, 26(7) : 593-602.
doi: 10.3109/02652040802586167
[17] PENG H L, XIONG H, LI J H, et al. Vanillin cross-linked chitosan microspheres for controlled release of resveratrol[J]. Food Chemistry, 2010, 121(1):23-28.
doi: 10.1016/j.foodchem.2009.11.085
[18] VENKATESAN C, VIMAL S, HAMEED A S S, et al. Synjournal and characterization of chitosan tripolyphosphate nanoparticles and its encapsulation efficiency containing russell's viper snake venom[J]. Journal of Biochemical and Molecular Toxicology, 2013, 27(8):406-411.
doi: 10.1002/jbt.2013.27.issue-8
[19] HOSSEINI S F, ZANDI M, REZAEI M, et al. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study[J]. Carbohydrate Polymers, 2013, 95(1):50-56.
doi: 10.1016/j.carbpol.2013.02.031
[20] WANG L Y, MA G H, SU Z G, et al. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug[J]. Journal of Controlled Release, 2005, 106(1):62-75.
doi: 10.1016/j.jconrel.2005.04.005
[21] HE P, DAVIS S, IIIUM L, et al. Chitosan microspheres prepared by spray drying[J]. International Journal of Pharmaceutics, 1999, 187(1):53-65.
doi: 10.1016/S0378-5173(99)00125-8
[22] LEE H S, KIM E H, SHAO H P, et al. Synjournal of spio-chitosan microspheres for mri-detectable embolotherapy[J]. Journal of Magnetism and Magnetic Materials, 2005, 293(1):102-105.
doi: 10.1016/j.jmmm.2005.01.049
[23] 姜炜, 李凤生, 杨毅, 等. 磁性壳聚糖复合微球的制备和性能研究[J]. 材料科学与工程学报, 2004(5):660-662.
JIANG Wei, LI Fengsheng, YANG Yi, et al. Preparation and characterization of magnetic chitosan microspheres for the carriers of radionuclides in the-rapy[J]. Journal of Materials Science & Engineering, 2004(5):660-662.
[24] KIM E S, LEE J S, LEE H L, et al. Calcium-alginate microparticles for sustained release of catechin prepared via an emulsion gelation technique[J]. Food Science and Biotechnology, 2016, 25(5):1337-1343.
doi: 10.1007/s10068-016-0210-8
[25] 王宏丽, 陈风雷, 陈涛, 等. 海藻酸钠/壳聚糖缓释微球的制备及性能[J]. 云南大学学报(自然科学版), 2010, 32(4):469-472,479.
WANG Hongli, CHEN Fenglei, CHEN Tao, et al. Preparation and properties of alginate/chitosan microspheres for controlled releasing[J]. Journal of Yunnan University (Natural Science edition), 2010, 32(4):469-472, 479.
[26] 陆敏, 王利强. 茶多酚/壳聚糖/海藻酸钠纳米微球的制备[J]. 包装工程, 2017, 38(19):47-51.
LU Min, WANG Liqiang. Preparation of polyphenols/chitosan/alginate nano-microspheres[J]. Packaging Engineering, 2017, 38(19):47-51.
[27] HU B, TING Y W, YANG X Q, et al. Nanochemoprevention by encapsulation of (-)-epigalloc-atechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of its bioavailability[J]. Chemical Communications, 2012, 48(18):2421-2423.
doi: 10.1039/c2cc17295j
[28] UPPUTURI R T P, MANDAL A K A. Sustained release of green tea polyphenols from liposomal nanoparticles; release kinetics and mathematical modelling[J]. Iranian Journal of Biotechnology, 2017, 15(4) : 277-283.
doi: 10.15171/ijb.1322
[29] WANG Q, XIAO A, LIU Y M, et al. One-step preparation of nano-in-micro poly(vinyl alcohol) embolic microspheres and used for dual-modal T1/T2-weighted magnetic resonance imaging[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2018, 14(8):2551-2561.
doi: 10.1016/j.nano.2018.08.003
[30] WANG H, QIN X Y, LI Z Y, et al. Preparation and evaluation of mri detectable poly (acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization[J]. International Journal of Pharmaceutics, 2016, 511(2):831-839.
doi: 10.1016/j.ijpharm.2016.07.028
[31] RONG J J, LIANG M, XUAN F Q, et al. Thrombin-loaded alginate-calcium microspheres: a novel hemostatic embolic material for transcatheter arterial embolization(article)[J]. International Journal of Biological Macromolecules, 2017, 104:1302-1312.
doi: 10.1016/j.ijbiomac.2017.03.020
[32] ALBRECHT T, GROSS A. Transarterial chemoembolisation (tace) with degradable starch microspheres (dsm) and anthracycline in patients with locally extensive hepatocellular carcinoma (hcc): safety and efficacy[J]. Cardiovascular and Interventional Radiology, 2019, 43:402-410.
doi: 10.1007/s00270-019-02364-w
[33] KAWASHITA M, UENO S, HANDA S, et al. In vitro evaluation of doxorubicin-eluting porous titania microspheres for transcatheter arterial chemoemboliza-tion[J]. Journal of Asian Ceramic Societies, 2020, 8(1):10-20.
doi: 10.1080/21870764.2019.1695559
[34] 侯志勇, 黄海波, 王立强, 等. 动脉栓塞微球的研究进展[J]. 中国医药科学, 2012, 2(16):9-11.
HOU Zhiyong, HUANG Haibo, WANG Liqiang, et al. Progress in the study of arterial embolic microsp-heres[J]. China Medicine and Pharmacy, 2012, 2(16):9-11.
[35] LI G, QIN S X. Studies on preparations and properties of drug-eluting embolization microspheres made from oxidated alginate and carboxymethyl chitosan[J]. International Journal of Polymeric Materials, 2019, 68(14):844-849.
doi: 10.1080/00914037.2018.1517346
[36] SANG X X, WEN Q W, ZHANG M, et al. Preparation of drug-eluting microspheres based on semi-interpenetrating polymer network of modified chitosan and poly(2-acrylamide-2-methylpropanesulfonic acid)[J]. Polymer Science Series A, 2019, 61(1):61-69.
doi: 10.1134/S0965545X19010061
[37] CHEN G B, WEI R W, HUANG X, et al. Synjournal and assessment of sodium alginate-modified silk fibroin microspheres as potential hepatic arterial embolization agent[J]. International Journal of Biological Macromolecules, 2020, 155:1450-1459.
doi: 10.1016/j.ijbiomac.2019.11.122
[38] 魏如男. 改性丝蛋白肝动脉栓塞微球的制备及性能研究[D]. 重庆: 重庆理工大学, 2019: 8-34.
WEI Runan. The preparation and performance study of the modified silk fibroin microspheres for transcatheter arterial chemoembolization[D]. Chongqing: Chongqing University of Technology, 2019: 8-34.
[39] HOU F L, ZHU Y H, ZOU Q, et al. One-step preparation of multifunctional alginate microspheres loaded with in situ-formed gold nanostars as a photothermal agent[J]. Materials Chemistry Frontiers, 2019, 3(10):2018-2024.
doi: 10.1039/C9QM00276F
[40] 郭李盈, 刘晓昕, 李子圆, 等. 空白及载阿霉素的聚丙烯酸栓塞微球的制备与评价[J]. 北京大学学报(医学版), 2018, 50(6):1070-1077.
GUO Liying, LIU Xiaoxin, LI Ziyuan, et al. Preparation and evaluation of blank and doxorubicin loaded poly(acrylic acid) microspheres for embolization[J]. Journal of Peking University (Health Sciences), 2018, 50(6):1070-1077.
[41] 姚芳莲, 于潇, 周玉涛. 壳聚糖-明胶载药微球的制备及释放性能[J]. 化学工业与工程, 2008(3):215-219.
YAO Fanglian, YU Xiao, ZHOU Yutao, et al. Preparation of chitosan-gelatin drug loading microshpere and its release characteristics[J]. Chemical Industry and Engineering, 2008(3):215-219.
[42] 邓阳全, 邵丽, 杨银, 等. 乳化交联法在载药微球制备中的应用及研究进展[J]. 世界科技研究与发展, 2009, 31(1):36-39.
DENG Yangquan, SHAO Li, YANG Yin, et al. Study on drug-carried microspheres prepared by emulsion cross-linking method[J]. World Sci-Tech R & D, 2009, 31(1):36-39.
[43] 罗华丽, 鲁在君. 壳聚糖微球制备工艺优化与分析[J]. 周口师范学院学报, 2007(2):63-66.
LUO Huali, LU Zaijun. Optimizing and analyzing for the preparation of chitosan microsphere[J]. Journal of Zhoukou Normal University, 2007(2):63-66.
[44] 王西, 吴修利, 赵珺, 等. 壳聚糖微球制备方法及其在医药应用的研究进展[J]. 长春大学学报, 2015, 25(10):64-68.
WANG Xi, WU Xiuli, ZHAO Jun, et al. Preparation for chitosan microspheres and progress of research in application of medicine[J]. Journal of Changchun University, 2015, 25(10):64-68.
[45] 王常煜. 微流控方法制备载纳米药物的肝癌化疗栓塞微球[D]. 南京: 南京大学, 2017: 10-18.
WANG Changyu. The preparation of nano-drug-encapsulation microbeads by microfluidic method for liver cancer chemoembolization[D]. Nanjing: University of Nanjing, 2017: 10-18.
[46] 李勋, 韦祎, 马光辉, 等. 缓释微球制剂的研究进展[J]. 北京化工大学学报(自然科学版), 2017, 44(6):1-11.
LI Xun, WEI Yi, MA Guanghui, et al. Recent research and development prospects for sustained-release microspheres[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2017, 44(6):1-11.
[47] KAR K, BALA N N, PAL R N, et al. Preparation, characterisation and evaluation of ropinirole hydrochloride loaded controlled release microspheres using solvent evaporation technique[J]. International Journal of Pharmacy and Pharmaceutical Sciences, 2018, 10(6):57-67.
[48] 陈艳, 谢委, 肖政. 温敏多柔比星纳米凝胶栓塞微球的评价与处方优化[J]. 医药导报, 2019, 38(11):1474-1478.
CHEN Yan, XIE Wei, XIAO Zheng. Evaluation and formulation optimization of doxorubicin-loaded microspheres for embolization using temperature sensitive nanogels[J]. Herald of Medicine, 2019, 38(11):1474-1478.
[49] 瞿静. 静电分化法制备丝素纳米颗粒及其作为顺铂控释载体的研究[D]. 苏州: 苏州大学, 2013: 4-8.
QU Jing. Preparation of silk fibroin nanoparticles by electrostatic differentiation and its use as a carrier for controlled release of cisplatin[D]. Suzhou: Soochow University, 2013: 4-8.
[50] HAGAN A, PHILLIPS G J, MACFARLANE, et al. Preparation and characterisation of vandetanib-eluting radiopaque beads for locoregional treatment of hepatic malignancies[J]. European Journal of Pharmaceutical Sciences, 2017, 101:22-30.
doi: 10.1016/j.ejps.2017.01.033
[51] 毋囡囡, 林雪纯, 应晨江, 等. 多酚类化合物与必需微量元素的相互作用[J]. 卫生研究, 2019, 48(6):1012-1016.
WU Nannan, LIN Xuechun, YING Chenjiang, et al. Interaction of polyphenols with essential Trace ele-ments[J]. Journal of Hygiene Research, 2019, 48(6):1012-1016.
[52] ZHAO Y Y, SUN Z T. Effects of gelatin-polyphenol and gelatin-genipin cross-linking on the structure of gelatin hydrogels[J]. International Journal of Food Properties, 2017, 20(3):2822-2832.
[53] CHANPHAI P, TAJMIR-RIAHI H A. Conjugation of tea catechins with chitosan nanoparticles[J]. Food Hydrocolloids, 2018, 84:561-570.
doi: 10.1016/j.foodhyd.2018.06.043
[54] 聂芊. 明胶包埋壳聚糖/海藻酸钠茶多酚的缓释性能[J]. 哈尔滨商业大学学报(自然科学版), 2005(4):418-420.
NIE Qian. Study on gluin-chitosan-sodium alginate sustained release system of tea polyphenols[J]. Journal of Harbin University of Commerce (Natural Sciences Edition), 2005(4):418-420.
[1] Feng LI. Research progress of polymer embolic microspheres [J]. , 2021, 42(10): 0-0.
[2] WANG Shudong, MA Qian, WANG Ke, QU Caixin, QI Yu. Structure and biocompatibility of silk fibroin/gelatin blended hydrogels [J]. Journal of Textile Research, 2020, 41(11): 41-47.
[3] SUN Fanchen, GUO Jing, YU Yue, ZHANG Sen. Preparation and properties of polyhydroxy fatty acid ester/sodium alginate composite electrospun nanofibers [J]. Journal of Textile Research, 2020, 41(05): 15-19.
[4] DONG Ke, LI Siming, WU Guanzheng, HUANG Hongrong, LIN Zhongshi, XIAO Xueliang. Preparation and properties of carbon fiber/polyester electrocardiogram monitoring embroidery electrode [J]. Journal of Textile Research, 2020, 41(01): 56-62.
[5] LIN Yongjia, YANG Dongchao, ZHANG Peihua, GU Yan. Preparation and properties of regenerated silk fibroin/acellular dermal matrix blended nanofiber membrane [J]. Journal of Textile Research, 2019, 40(07): 13-18.
[6] . Structure and properties of polylactic acid-polycaprolactone/silk fibroin composite nanofibrous scaffolds [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 8-13.
[7] . Surface modification of PET by acrylic acid and collagen [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 152-0.
[8] . Current research of implantation artificial hair and biocompatibilit of polypyrrole [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(5): 146-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!