Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (10): 190-198.doi: 10.13475/j.fzxb.20200808109
• Comprehensive Review • Previous Articles
CLC Number:
[1] |
SATI R, CROWN E M, GONZALEZ J, et al. Protection from steam at high pressures: development of a test device and protocol[J]. International Journal of Occupational Safety and Ergonomics, 2008, 14(1):29-41.
doi: 10.1080/10803548.2008.11076748 |
[2] |
LU Y, SONG G, ACKERMAN M Y, et al. A new protocol to characterize thermal protective performance of fabrics against hot liquid splash[J]. Experimental Thermal and Fluid Science, 2013, 46:37-45.
doi: 10.1016/j.expthermflusci.2012.11.018 |
[3] | 张梦莹, 苗勇, 李俊. 防火服热蓄积的影响因素及其测评方法[J]. 纺织学报, 2016, 37(6):171-176. |
ZHANG Mengying, MIAO Yong, LI Jun. Influence factors and evaluation methods of stored thermal energy in firefighters protective clothing[J]. Journal of Textile Research, 2016, 37(6):171-176. | |
[4] | BARKER R. A review of gaps and limitations in test methods for first responder protective clothing and equipment[R]. North Carolina: National Institute for Occupational Safety and Health, 2005: 1-101. |
[5] |
BARKER H. Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures abstract[J]. Textile Research Journal, 2006, 76(1):27-31.
doi: 10.1177/0040517506053947 |
[6] |
BARKER R L, DEATON A S, ROSS K A. Heat transmission and thermal energy storage in firefighter turnout suit materials[J]. Fire Technology, 2011, 47(3):549-563.
doi: 10.1007/s10694-010-0151-3 |
[7] |
PERKINS R M. Insulative values of single-layer fabrics for thermal protective clothing[J]. Textile Research Journal, 1979, 49(4):202-212.
doi: 10.1177/004051757904900404 |
[8] |
SAWCYN C M J, TORVI D A. Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics[J]. Textile Research Journal, 2009, 79(7):632-644.
doi: 10.1177/0040517508093415 |
[9] | WATSON K. From radiant protective performance to RadManTM: the role of clothing materials in protecting against radiant heat exposures in wildland forest fires[D]. North Carolina: North Carolina State University, 2014: 1-98. |
[10] |
FU M, WENG W, YUAN H. Effects of multiple air gaps on the thermal performance of firefighter protective clothing under low-level heat exposure[J]. Textile Research Journal, 2014, 84(9):968-978.
doi: 10.1177/0040517513512403 |
[11] | ŁAPKA P, FURMANSKI P. Modeling and analysis of the influence of the protective garment movement on the skin temperature and burn degree[J]. Fire Safety Journal, 2020, 111:1-16. |
[12] |
MERT E, PSIKUTA A, BUENO M A, et al. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment[J]. International Journal of Biometeorology, 2015, 59(11):1701-1710.
doi: 10.1007/s00484-015-0978-x |
[13] |
SU Y, LI R, SONG G, et al. Modeling steam heat transfer in thermal protective clothing under hot steam exposure[J]. International Journal of Heat and Mass Transfer, 2018, 120:818-829.
doi: 10.1016/j.ijheatmasstransfer.2017.12.074 |
[14] |
LI J, LU Y, LI X. Effect of relative humidity coupled with air gap on heat transfer of flame-resistant fabrics exposed to flash fires[J]. Textile Research Journal, 2012, 82(12):1235-1243.
doi: 10.1177/0040517512436830 |
[15] |
FU M, WENG W G, YUAN H Y. Quantitative assessment of the relationship between radiant heat exposure and protective performance of multilayer thermal protective clothing during dry and wet condi-tions[J]. Journal of Hazardous Materials, 2014, 276:383-392.
doi: 10.1016/j.jhazmat.2014.05.056 |
[16] |
GUAN M, PSIKUTA A, CAMENZIND M, et al. Effect of perspired moisture and material properties on evaporative cooling and thermal protection of the clothed human body exposed to radiant heat[J]. Textile Research Journal, 2019, 89(18):3663-3676.
doi: 10.1177/0040517518817067 |
[17] |
FU M, WENG W, HAN X. Effects of moisture transfer and condensation in protective clothing based on thermal manikin experiment in fire environment[J]. Procedia Engineering, 2013, 62:760-768.
doi: 10.1016/j.proeng.2013.08.123 |
[18] |
BRÖDE P, KUKLANE K, CANDAS V, et al. Heat gain from thermal radiation through protective clothing with different insulation, reflectivity and vapour permeabi-lity[J]. International Journal of Occupational Safety and Ergonomics, 2010, 16(2):231-244.
doi: 10.1080/10803548.2010.11076842 |
[19] | FU M. Comparison of bench-scale and manikin tests of protective clothing systems during low-level radia-tion[C]// Fire Science and Technology 2015: The Proceedings of 10th Asia-Oceania Symposium on Fire Science and Technology. Tsukuba: AOAFST, 2015: 485-490. |
[20] | YANG J, SU Y, SONG G, et al. A new approach to predict heat stress and skin burn of firefighter under low-level thermal radiation[J]. International Journal of Thermal Sciences, 2019, 145:1-10. |
[21] |
SUN G, YOO H S, ZHANG X S, et al. Radiant protective and transport properties of fabrics used by wildland firefighters[J]. Textile Research Journal, 2000, 70(7):567-573.
doi: 10.1177/004051750007000702 |
[22] |
MANDAL S, SONG G, ACKERMAN M, et al. Characterization of textile fabrics under various thermal exposures[J]. Textile Research Journal, 2013, 83(10):1005-1019.
doi: 10.1177/0040517512461707 |
[23] |
GUAN M, ANNAHEIM S, CAMENZIND M, et al. Moisture transfer of the clothing-human body system during continuous sweating under radiant heat[J]. Textile Research Journal, 2019, 89(21/22):4537-4553.
doi: 10.1177/0040517519835767 |
[24] | ROSSI R M, BOLLI W P. Assessment of radiant heat protection of firefighters'jackets with a manikin[M]. PA: ASTM International, 2000: 212-223. |
[25] |
SONG G, PASKALUK S, SATI R, et al. Thermal protective performance of protective clothing used for low radiant heat protection[J]. Textile Research Journal, 2011, 81(3):311-323.
doi: 10.1177/0040517510380108 |
[26] |
HE J, LI J, KIM E. Assessment of the heat and moisture transfer in a multilayer protective fabric system under various ambient conditions[J]. Textile Research Journal, 2015, 85(3):227-237.
doi: 10.1177/0040517514545255 |
[27] |
SU Y, HE J, LI J. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure[J]. Applied Thermal Engineering, 2016, 93:1295-1303.
doi: 10.1016/j.applthermaleng.2015.10.089 |
[28] |
HE J, LI J. Analyzing the transmitted and stored energy through multilayer protective fabric systems with various heat exposure time[J]. Textile Research Journal, 2016, 86(3):235-244.
doi: 10.1177/0040517515588272 |
[29] |
HE J, LU Y, YANG J. Quantification of the energy storage caused dual performance of thermal protective clothing containing with moisture exposed to hot steam[J]. Energy Science and Engineering, 2019, 7(6):2585-2595.
doi: 10.1002/ese3.v7.6 |
[30] | DORMAN L, HAVENITH G, BROEDE P. Modelling the metabolic effects of protective clothing[C]// 3rd European Confereetive Clothing(ECPC). Poland: Loughborough's In Stitutional Repository Ltd, 2006, 82-85. |
[31] |
MANDAL S, ANNAHEIM S, CAMENZIND M, et al. Characterization and modelling of thermal protective performance of fabrics under different levels of radiant-heat exposures[J]. Journal of Industrial Textiles, 2019, 48(7):1184-1205.
doi: 10.1177/1528083718760801 |
[32] | 万志琴. 织物有效辐射系数的理论探讨与实验研究[J]. 纺织学报, 1999, 20(4):224-232. |
WAN Zhiqin. Theoretical and experimental study on effective radiation coefficient of fabric[J]. Journal of Textile Research, 1999, 20(4):224-232. | |
[33] | TORVI D, REZAZADEH M, BESPFLUG C. Effects of convective and radiative heat sources on thermal response of single- and multiple-layer protective fabrics in benchtop tests[C]// SHIELS B, LEHTONEN K. Performance of Protective Clothing and Equipment: 10th Volume, Risk Reduction Through Research and Testing. PA: ASTM International, 2016: 131-158. |
[34] |
HAGER N E, STEERE R C. Radiant heat transfer in fibrous thermal insulation[J]. Journal of Applied Physics, 1967, 38(12):4663-4668.
doi: 10.1063/1.1709200 |
[35] | TONG T W, TIEN C L. Analytical models for thermal radiation in fibrous insulations[J]. Journal of Thermal Envelope and Building Science, 1980, 4(1):27-44. |
[36] | TORVI D A. A finite element model of skin subjected to a flash fire[D]. Alberta: University of Alberta, 1994, 1-147. |
[37] |
ZHU F, ZHANG W, SONG G. Heat transfer in a cylinder sheathed by flame-resistant fabrics exposed to convective and radiant heat flux[J]. Fire Safety Journal, 2008, 43(6):401-409.
doi: 10.1016/j.firesaf.2007.11.007 |
[38] |
FU M, YUAN M Q, WENG W G. Modeling of heat and moisture transfer within firefighter protective clothing with the moisture absorption of thermal radiation[J]. International Journal of Thermal Sciences, 2015, 96:201-210.
doi: 10.1016/j.ijthermalsci.2015.05.008 |
[39] |
REISCHL U, STRANSKY A. Comparative assessment of GORETEXTM and NEOPRENETM vapor barriers in a firefighter turn-out coat[J]. Textile Research Journal, 1980, 50(11):643-647.
doi: 10.1177/004051758005001101 |
[40] |
REISCHL U, STRANSKY A, TRAVIS R. Advanced prototype firefighter protective clothing: heat dissipation characteristics[J]. Textile Research Journal, 1982, 52(1):66-73.
doi: 10.1177/004051758205200110 |
[41] |
LI J, BARKER R L, DEATON A S. Evaluating the effects of material component and design feature on heat transfer in firefighter turnout clothing by a sweating manikin[J]. Textile Research Journal, 2007, 77(2):59-66.
doi: 10.1177/0040517507078029 |
[42] |
MCQUERRY M, BARKER R, DENHARTOG E. Functional design and evaluation of structural firefighter turnout suits for improved thermal comfort: thermal manikin and physiological modeling[J]. Clothing and Textiles Research Journal, 2018, 36(3):165-179.
doi: 10.1177/0887302X18757348 |
[43] |
MEREDITH M, DEN HARTOG E, BARKER R, et al. A review of garment ventilation strategies for structural firefighter protective clothing[J]. Textile Research Journal, 2016, 86(7):727-742.
doi: 10.1177/0040517515595029 |
[44] | 卢业虎. 高温液体环境下热防护服装热湿传递与皮肤烧伤预测[D]. 上海: 东华大学, 2013: 22-56. |
LU Yehu. Study on heat and mass transfer of thermal protective clothing and prediction of skin burn upon hot liquid splashes[D]. Shanghai: Donghua University, 2013:22-56. | |
[45] | 苏云, 王云仪, 李俊. 消防服衣下空气层热传递机制研究进展[J]. 纺织学报, 2016, 37(1):167-172. |
SU Yun, WANG Yunyi, LI Jun. Research progress of heat transfer mechanism of air gap under firefighter protective clothing[J]. Journal of Textile Research, 2016, 37(1):167-172. | |
[46] |
UDAYRAJ, TALUKDAR P, DAS A, et al. Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: effect of air gap orientation and body movement[J]. International Journal of Heat and Mass Transfer, 2017, 108:271-291.
doi: 10.1016/j.ijheatmasstransfer.2016.12.016 |
[47] |
ZHU F L, ZHANG W Y. Evaluation of thermal performance of flame-resistant fabrics considering thermal wave influence in human skin model[J]. Journal of Fire Sciences, 2006, 24(6):465-486.
doi: 10.1177/0734904106062355 |
[48] |
SU Y, LI J, WANG Y. Effect of air gap thickness on thermal protection of firefighter's protective clothing against hot steam and thermal radiation[J]. Fibers and Polymers, 2017, 18(3):582-589.
doi: 10.1007/s12221-017-6714-x |
[49] |
GUAN M, LI J. Garment size effect of thermal protective clothing on global and local evaporative cooling of walking manikin in a hot environment[J]. International Journal of Biometeorology, 2020, 64(3):485-499.
doi: 10.1007/s00484-019-01836-5 |
[50] |
MAH T, SONG G. Investigation of the contribution of garment design to thermal protection: part 1: characterizing air gaps using three-dimensional body scanning for women's protective clothing[J]. Textile Research Journal, 2010, 80(13):1317-1329.
doi: 10.1177/0040517509358795 |
[51] | HE H, YU Z C, SONG G. The effect of moisture and air gap on the thermal protective performance of fabric assemblies used by wildland firefighters[J]. Journal of the Textile Institute, 2016, 107(8):1030-1036. |
[52] | 黄冬梅, 何松. 空气层位置对消防战斗服隔热性能的影响[J]. 纺织学报, 2015, 36(10):113-119. |
HUANG Dongmei, HE Song. Influence of air gap position of heat insulation performance of firefighter'protective clothing[J]. Journal of Textile Research, 2015, 36(10):113-119. | |
[53] |
HEUS R, DENHARTOG E A. Maximum allowable exposure to different heat radiation levels in three types of heat protective clothing[J]. Industrial Health, 2017, 55(6):529-536.
doi: 10.2486/indhealth.2017-0137 |
[54] |
SU Y, HE J, LI J. Numerical simulation of heat transfer in protective clothing with various heat exposure distances[J]. Journal of the Textile Institute, 2017, 108(8):1412-1420.
doi: 10.1080/00405000.2016.1254591 |
[55] |
LI J, TIAN M. Personal thermal protection simulation under diverse wind speeds based on life-size manikin exposed to flash fire[J]. Applied Thermal Engineering, 2016, 103:1381-1389.
doi: 10.1016/j.applthermaleng.2016.04.155 |
[56] | EGBE U E. Developing test procedures for measuring stored thermal energy in firefighter protective clothing[D]. North Carolina: North Carolina State University, 2005: 1-65. |
[57] |
DAS B, ARAUJO M De, KOTHARI V K, et al. Modeling and simulation of moisture transmission through fibrous structures: part II: liquid water transmission[J]. Journal of Fiber Bioengineering and Informatics, 2013, 6(4):383-404.
doi: 10.3993/jfbi |
[58] |
DAS B, DE ARAUJO M, KOTHARI V K, et al. Modeling and simulation of moisture transmission through fibrous structures: part I: water vapour transmission[J]. Journal of Fiber Bioengineering and Informatics, 2012, 5(4):359-378.
doi: 10.3993/jfbi |
[59] | ŁAPKA P, FURMANSKI P, WISNIEWSKI T S. Numerical modelling of transient heat and moisture transport in protective clothing[J]. Journal of Physics: Conference Series, 2016, 676(1):1-15. |
[60] |
ZHANG H, SONG G, REN H, et al. The effects of moisture on the thermal protective performance of firefighter protective clothing under medium intensity radiant exposure[J]. Textile Research Journal, 2018, 88(8):847-862.
doi: 10.1177/0040517517690620 |
[61] | BARKER R L, GUERTH C, BEHNKE W P, et al. Measuring the thermal energy stored in firefighter protective clothing[J]. ASTM Special Technical Publication, 2000: 33-44. |
[62] | JASON A, STEVEN C D C. Thermal capacity of fire fighter protective clothing[R]. USA: [s.n], 2008, 1-37. |
[63] | LAWSON J R. Fire fighters's protective clothing and thermal environments of structural fire fighting[M]. PA: ASTM International, 1997: 334-352. |
[64] |
KEISER C, ROSSI R M. Temperature analysis for the prediction of steam formation and transfer in multilayer thermal protective clothing at low level thermal radia-tion[J]. Textile Research Journal, 2008, 78(11):1025-1035.
doi: 10.1177/0040517508090484 |
[65] |
ROSSI R, INDELICATO E, BOLLI W. Hot steam transfer through heat protective clothing layers[J]. International Journal of Occupational Safety and Ergonomics, 2004, 10(3):239-245.
doi: 10.1080/10803548.2004.11076611 |
[66] | TORVI D A, DALE J D, FAULKNER B. Influence of air gaps on bench-top test results of flame resistant fabrics[J]. Journal of Fire Protection Engineering, 1999, 10(1):1-12. |
[67] |
LU Y, LI J, LI X, et al. The effect of air gaps in moist protective clothing on protection from heat and flame[J]. Journal of Fire Sciences, 2013, 31(2):99-111.
doi: 10.1177/0734904112457342 |
[68] |
YAMAMOTO G, TANAKA M, ASANO S. Radiative heat transfer in water clouds by infrared radiation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1971, 11(6):697-708.
doi: 10.1016/0022-4073(71)90048-3 |
[69] |
FU M. Combined effects of moisture and radiation on thermal performance of protective clothing experiments by a sweating manikin exposed to low level radiation[J]. International Journal of Clothing Science and Technology, 2014, 27(6):818-834.
doi: 10.1108/IJCST-05-2014-0064 |
|