Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (10): 61-66.doi: 10.13475/j.fzxb.20200907006

• Textile Engineering • Previous Articles     Next Articles

Measurement method of yarn torque using a free rotor

HONG Yan1, SHEN Xiaolin1(), TIAN Ye2, WU Sanbao2, YANG Jin2   

  1. 1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University,Wuhan, Hubei 430200, China
    2. Guangdong Esquel Textile Co., Ltd., Foshan, Guangdong 528000, China
  • Received:2020-09-27 Revised:2021-06-21 Online:2021-10-15 Published:2021-10-29
  • Contact: SHEN Xiaolin E-mail:shen@wtu.edu.cn

Abstract:

In order to measure accurately the torque of the yarn to match the yarn steaming standard, and to reduce the probability of skewed weft in fabrics due to the residual torque of the yarn, a method was proposed to detect the torque of yarn with the use of a free rotor as the core. Firstly, the free rotor was connected to the end of the yarn before starting to rotate smoothly under the action of electromagnetic damping. The photoelectric sensor was placed to scan the rotating status and to transmit the captured photoelectric signal to the computer, for studying the relationship between the rotor's rotation angle and time to obtain the angular acceleration versus time curve by means of the second order of differentiation using Origin. Upon the availability of the initial angular acceleration of the rotor from the curve, and the torque of the test yarn can be quickly and efficiently obtained by multiplying the initial angular acceleration and the rotor's rotational inertia. The experimental results show that the method can accurately measure the torque of various yarns with small relative error, which not only has a broad application prospect in today's textile production testing, but also provides a new way of thinking in the field of yarn torque research.

Key words: yarn, torque, free rotor, photoelectric sensor, angular acceleration, rotational inertia

CLC Number: 

  • TS103

Fig.1

Detailed structure of rotor"

Fig.2

Cone chassis"

Tab.1

Parameters of sample yarn"

纱线类别 捻度/(捻·m-1) 线密度/tex 直径/mm
白色纱线 800 47.1 0.254
蓝色纱线 630 29.2 0.198
粉红色纱线 630 29.2 0.195
紫色纱线 630 29.2 0.201
深红色纱线 840 19.4 0.163
绿色纱线 840 19.4 0.165
棕色纱线 840 19.4 0.159

Fig.3

Relationship curve between angle(a),angular velocity(b),angular acceleration(c)and time of rotor"

Tab.2

Test data of different length yarns"

纱线长度/
cm
转子角加速度平
均值/(rad· s - 2)
变异系
数/%
纱线的扭
矩/10-6(N·m)
8 2.30 0.82 1.52
10 2.26 0.79 1.49
12 2.28 0.62 1.51
14 2.27 1.04 1.50
16 2.31 0.91 1.53
18 2.26 1.01 1.49
20 2.27 0.92 1.50
22 2.28 1.24 1.51

Fig.4

Relationship curve between rotor angular acceleration and time"

Tab.3

Test data of yarns with different twist"

纱线捻度/
(捻·m-2)
转子角加速度平
均值/(rad· s - 2)
变异系
数/%
纱线的扭矩/
10-7(N·m)
530 0.73 1.94 4.83
563 0.82 1.09 5.42
597 0.89 1.59 5.88
630 1.40 1.01 9.25
663 1.85 1.60 12.2
697 2.03 0.82 15.2
730 2.62 1.08 17.3
763 3.09 1.02 20.4
797 3.43 0.86 22.7

Fig.5

Relationship curve between yarn torque and twist for different twisting degrees"

Tab.4

Test data of yarns with same linear density and different colors"

纱线
类型
转子角加速度平
均值/(rad·s-2)
变异系
数/%
纱线的扭
矩/10-7(N·m)
29.2 tex粉红色纱线 1.34 1.70 8.86
29.2 tex蓝色纱线 1.40 1.35 9.25
29.2 tex紫色纱线 1.29 1.10 8.53
19.4 tex绿色纱线 1.09 0.82 7.20
19.4 tex棕色纱线 1.36 1.04 8.99
19.4 tex深红色纱线 1.20 1.39 7.93
[1] 史先传, 董冲, 苏胜辉, 等. 结合Sobel和PPHT的织物纬斜检测方法研究[J]. 计算机测量与控制, 2020, 28(8):48-52, 57.
SHI Xianchuan, DONG Chong, SU Shenghui, et al. Research on fabric weft skew detection method combining Sobe land PPHT[J]. Computer Measurement and Control, 2020, 28(8):48-52, 57.
[2] 曲丽君. 针织用棉纱蒸纱实践[J]. 纺织导报, 2008(10):98-99.
Qu Lijun. The practice of steaming cotton yarn for knitting[J]. China Textile Leader, 2008(10):98-99.
[3] 吴雄英. 纤维和纱线扭转性能及扭应力松弛行为的研究综述[J]. 东华大学学报(自然科学版), 2001, 27(5):132-138.
WU Xiongying. Review of the research on the torsional properties and torsional stress relaxation behavior of fibers and yarns[J]. Journal of Donghua University (Natural Science), 2001, 27(5):132-138.
[4] ZUREK W, DURSKA I . The torsional rigidity of blend yarns[J]. Textile Research Journal, 1980, 50(9):555-567.
doi: 10.1177/004051758005000907
[5] FREESTON W D, PLATT MM, BUTTERWORTH G. Mechanics of elastic perforance of textile materials, part XVII: torsional recovery of filaments and singles yarns, and plied-yarn balance[J]. Textile Research Journal, 1966, 36(1):12-30.
doi: 10.1177/004051756603600103
[6] 王涛. 光电传感器的原理及应用探讨[J]. 计算机产品与流通, 2018(7): 64, 122.
WANG Tao. Discussion on the principle and application of photoelectric sensors [J]. Computer Products and Circulation, 2018(7): 64, 122.
[7] 阎景云. 刚体绕定轴转动定律和角动量定理的表达式[J]. 运城高专学报, 1990(3):64-71.
YAN Jingyun. Expressions of the law of rigid body rotation around a fixed axis and the law of angular momentum[J]. Journal of Yuncheng College, 1990(3):64-71.
[8] 杨小云. 常见均匀刚体转动惯量的计算[J]. 科技资讯, 2018, 16(29):184-185.
YANG Xiaoyun. Calculation of moment of inertia of common rigid body[J]. Science and Technology Information, 2018, 16(29):184-185.
[9] 温亚芹. 刚体转动惯量计算方法研究[J]. 黑龙江科学, 2019, 10(6):40-42.
WEN Yaqin. Research on calculation method of rigid body moment of inertia[J]. Heilongjiang Science, 2019, 10(6):40-42.
[10] 田硕. 刚体转动惯量的几种计算方法[J]. 中国西部科技, 2015, 14(6):82-84.
TIAN Shuo. Several calculation methods for the moment of inertia of rigid bodies[J]. Western China Science and Technology, 2015, 14(6):82-84.
[11] 蓝善权. 圆盘转动惯量的三种计算方法[J]. 黑龙江科学, 2019, 10(23):66-67.
LAN Shanquan. Three calculation methods of disc moment of inertia[J]. Heilongjiang Science, 2019, 10(23):66-67.
[12] 邱为钢. 匀质三角形板和边框的转动惯量[J]. 物理与工程, 2014, 24(3):29-30, 41.
QIU Weigang. Moment of inertia of homogeneous triangular plate and frame[J]. Physics and Engineering, 2014, 24(3):29-30, 41.
[13] 闫敏, 戴语琴, 袁俊, 等. 转动惯量平行轴定理验证实验的改进方案[J]. 大学物理, 2020, 39(5):66-69.
YAN Min, DAI Yuqin, YUAN Jun, et al. An improved scheme for the verification experiment of the parallel axis theorem of moment of inertia[J]. College Physics, 2020, 39(5):66-69.
[14] 莫杰雄. 以常见刚体的转动惯量计算为例谈微元的选取[J]. 长春师范学院学报(自然科学版), 2010, 29(6):24-26.
MO Jiexiong. Take the calculation of the moment of inertia of common rigid bodies as an example to discuss the selection of micro-elements[J]. Journal of Changchun Normal University (Natural Science Edition), 2010, 29(6):24-26.
[1] WAN Zhenkai, JIA Minrui, BAO Weichen. Optimal configuration of embedded position and number of carbon nanotube yarns in 3-D braided composites [J]. Journal of Textile Research, 2021, 42(09): 76-82.
[2] WU Jiaqing, WANG Ying, HAO Xinmin, GONG Yumei, GUO Yafei. Effect of filament feeding positions on structure and properties of siro-spinning core-spun yarns [J]. Journal of Textile Research, 2021, 42(08): 64-70.
[3] GUO Minghua, LIU Xinjin. Investigation on distribution of fiber accelerated points in drafting zone of ring spinner based on cut-weighing method [J]. Journal of Textile Research, 2021, 42(08): 71-75.
[4] YANG Ruihua, PAN Bo, GUO Xia, WANG Lijun, LI Jianwei. Study on fiber mixing effect in ring spun, rotor and air-jet-vortex spun color blended yarns [J]. Journal of Textile Research, 2021, 42(07): 76-81.
[5] LI Fengyan, YE Tianyu, ZHAN Xiaoqing, ZHAO Jian, LI Danyang, WANG Rui. Preparation and properties of puncture-resistant fabrics made from polyester and aramid or ultrahigh molecular weight polyethylene compound yarns [J]. Journal of Textile Research, 2021, 42(07): 82-88.
[6] QIN Xiaoxuan, QU Lixin, XIE Chunping. Process design of combed yarn from original and discolored yak hair [J]. Journal of Textile Research, 2021, 42(06): 78-84.
[7] LIU Xiaoqian, CHEN Yu, ZHOU Huimin, YAN Yuan, XIA Xin. Preparation of polyacrylonitrile conductive nanofiber yarn grafted with acrylic acid using plasma technology [J]. Journal of Textile Research, 2021, 42(05): 109-114.
[8] YUAN Li, XIONG Ying, GU Qian, WANG Danshu, HUO Da, LIU Junping. Characteristics and factorial study of color transfer between dyed fiber and colored spun yarns [J]. Journal of Textile Research, 2021, 42(05): 122-129.
[9] NI Jie, YANG Jianping, YU Chongwen. Effect of ratio of strands twist factor to single yarn twist factor on properties of viscose plied yarns [J]. Journal of Textile Research, 2021, 42(05): 46-50.
[10] ZUO Yajun, CAI Yun, WANG Lei, GAO Weidong. Influence of ply number of cotton yarns on fabrics performance [J]. Journal of Textile Research, 2021, 42(04): 74-79.
[11] PENG Laihu, LUO Chang, NIU Chong, LÜ Yongfa, HU Xudong, DAI Ning. Control technology for spandex yarn delivery in weft knitting [J]. Journal of Textile Research, 2021, 42(04): 162-169.
[12] YANG Wenjing, WU Hailiang, MA Jianhua, YAO Yijun, SHEN Yanqin. Preparation and properties of succinic anhydride acylated gelatin sizing agent for wool yarn sizing [J]. Journal of Textile Research, 2021, 42(04): 93-100.
[13] RUAN Li, SUN Rongji, LIU Jihong, LI Yonggui. Analysis of back draft effect and yarn structure of Siro fancy yarn with special appearance structure [J]. Journal of Textile Research, 2021, 42(03): 77-81.
[14] LI Dongjie, GUO Shuai, YANG Liu. Yarn defect detection based on improved image threshold segmentation algorithm [J]. Journal of Textile Research, 2021, 42(03): 82-88.
[15] LI Hao, XING Mingjie, SUN Zhihao, WU Yao. Exploration of image-based testing method for yarn twist in air-jet vortex spinning [J]. Journal of Textile Research, 2021, 42(02): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!