Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (11): 159-165.doi: 10.13475/j.fzxb.20210100107

• Machinery & Accessories • Previous Articles     Next Articles

Design and simulation of Lorentz force actuated maglev knitting needle actuator

LIU Zexu1,2, XU Guangshen1,2, SHENG Xiaochao1,2(), DAI Xinyi1,2   

  1. 1. College of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an, Shaanxi 710048, China
  • Received:2021-01-04 Revised:2021-07-29 Online:2021-11-15 Published:2021-11-29
  • Contact: SHENG Xiaochao E-mail:xchsheng@xpu.edu.cn

Abstract:

In order to solve the problems of friction, impact in triangle knitting needle drive, and avoid the nonlinear influence of electromagnetic force, this paper presents a maglev knitting needle actuator based on Lorentz force. Firstly, the driving principle and mathematical model were proposed, and the electromagnetic finite element analysis is carried out with ANSYS; Secondly, the PID controller is designed, and the system control model is built and simulated in MatLab/Simulink; Finally, the physical platform is built for experimental verification. Magnetic field simulation shows that the magnetic field in the working area of the model is uniform and stable, and the electromagnetic force meets the driving requirements. The control system simulation results show that the needle trajectory is consistent with the expected trajectory, and the simulation error is within ±3.5 μm. The experimental results of the physical platform show that the needle can reach the height of tuck, with rapid, stable and no oscillation, and the experimental error is within ±10 μm. Lorentz force actuated maglev knitting needle actuator can eliminate the friction, vibration and impact in the needle movement. Compared with reluctance force actuated knitting needle actuator, the control system is simple, linear and the control precision can reach micron level.

Key words: knitting needle driving, maglev, Lorentz force, textile machinery, magnetic field finite element method

CLC Number: 

  • TS183

Fig.1

Principle of Lorentz force actuated maglev knitting needle actuator"

Fig.2

Structure of Lorentz force actuated maglev knitting needle actuator"

Fig.3

Model stress analysis. (a)Knitting needle rise; (b)Knitting needle drop"

Fig.4

Magnetic field finite element mesh generation"

Fig.5

Results of magnetic field simulation. (a)Magnetic lines distribution; (b)Magnetic flux density distribution"

Fig.6

Radial magnetic induction intensity"

Fig.7

Motion trace of maglev knitting needle"

Fig.8

Block diagram of Lorentz force actuated maglev knitting needle actuator control system"

Fig.9

Overall model of control system"

Fig.10

Curve of control system response. (a)Displacement response; (b)Displacement error response"

Fig.11

Lorentz force actuated maglev knitting needle actuator prototype"

Fig.12

Results of physical experiment. (a)Displacement response; (b)Displacement error response"

[1] PORATH M D C, BORTONI L A F, SIMONI R, et al. Offline and online strategies to improve pose accuracy of a Stewart platform using indoor-GPS[J]. Precision Engineering, 2020, 63:83-93.
doi: 10.1016/j.precisioneng.2020.01.003
[2] QIAN Junbing, CHEN Xuedong, CHEN Han, et al. Magnetic field analysis of Lorentz motors using a novel segmented magnetic equivalent circuit method[J]. Sensors, 2013, 13:1664-1678.
doi: 10.3390/s130201664 pmid: 23358368
[3] 张森林, 沈国炎. 直线电机在电子提花机中的应用[J]. 纺织学报, 2008, 29(11):119-123.
ZHANG Senlin, SHEN Guoyan. Application of linear motors in electronic jacquard[J]. Journal of Textile Research, 2008, 29(11):119-123.
doi: 10.1177/004051755902900202
[4] 范良志. 电织针永磁阵列内的静磁场分布及结构刚度分析[J]. 电机与控制学报, 2013, 17(3):84-91.
FAN Liangzhi. Static magnetic field and structure rigidity analysis for permanent magnet matrix in electric knitting needle[J]. Electric Machines and Control, 2013, 17(3):84-91.
[5] 汪诚诚. 电织针超薄直线电机阵列单元的结构优化设计[D]. 武汉: 武汉纺织大学, 2014:7-15.
WANG Chengcheng. Structure optimization design of electric needle thin linear motor of an array element[D]. Wuhan: Wuhan Textile University, 2014:7-15.
[6] 刘凯, 张团善, 胥光申, 等. 基于U型直线电机的袜机织针系统的参数选择[J]. 纺织报告, 2018(1):58-60.
LIU Kai, ZHANG Tuanshan, XU Guangshen, et al. Structural design of needle-picking system based on U-type linear motor[J]. Textile Reports, 2018(1):58-60.
[7] 吴晓光, 孔令学, 朱里, 等. 磁悬浮式针织提花驱动方式理论研究与探讨[J]. 纺织学报, 2012, 33(10):128-133.
WU Xiaoguang, KONG Lingxue, ZHU Li, et al. Theoretical research on propulsion mode of magnetic suspension needles for jacquard knitting[J]. Journal of Textile Research, 2012, 33(10):128-133.
[8] 吴晓光, 张弛, 朱里, 等. 磁悬浮式驱动织针的关键技术与试验模型[J]. 纺织学报, 2014, 35(10):129-135.
WU Xiaoguang, ZHANG Chi, ZHU Li, et al. Key technologies of magnetic suspension driving knitting needles and experiment model[J]. Journal of Textile Research, 2014, 35(10):129-135.
doi: 10.1177/004051756503500206
[9] 李冬冬, 张成俊, 左小艳, 等. 混合磁悬浮织针驱动的永磁织针磁场分布规律[J]. 纺织学报, 2020, 41(9):136-142.
LI Dongdong, ZHANG Chengjun, ZUO Xiaoyan, et al. Study on magnetic field distribution in permanent magnetic needle drive using hybrid magnetic suspension needle[J]. Journal of Textile Research, 2020, 41(9):136-142.
[10] 万道玉, 吴晓光, 张弛, 等. 磁悬浮式驱动织针电磁力研究及线圈轮廓优化[J]. 针织工业, 2017(8):9-12.
WAN Daoyu, WU Xiaoguang, ZHANG Chi, et al. Electromagnetic force study of magnetic suspension driving knitting needle and coil profile optimization[J]. Knitting Industries, 2017(8):9-12.
[11] 游良风. 磁悬浮织针大行程驱动研究[D]. 武汉: 武汉纺织大学, 2020:7-21.
YOU Liangfeng. Study on the large stroke driving of Maglev knitting needle[D]. Wuhan: Wuhan Textile University, 2020:7-21.
[12] KURNYTA-MAZUREK P, KURNYTA A, HENZEL M. Measurement system of a magnetic suspension system for a jet engine rotor[J]. Sensors, 2020, 20(3):862.
doi: 10.3390/s20030862
[13] DING Sansan, SUN Jinji, HAN Weitao, et al. Modeling and analysis of a novel guidance magnet for high speed maglev train[J]. IEEE Access, 2019, 7:133324-133334.
doi: 10.1109/ACCESS.2019.2940728
[14] 刘洋, 吴晓光, 张弛, 等. 磁悬浮式驱动织针弯纱张力的动态分析及研究[J]. 针织工业, 2016(4):23-26.
LIU Yang, WU Xiaoguang, ZHANG Chi, et al. Dynamic analysis and research on knitting tension in the knitting process of magnetic levitated driven needle[J]. Knitting Industries, 2016(4):23-26.
[15] 朱里, 吴晓光, 孙盼, 等. 悬浮式驱动织针系统的高效编织模式研究[J]. 针织工业, 2019(7):17-21.
ZHU Li, WU Xiaoguang, SUN Pan, et al. Study of highly efficient knitting mode of suspension driven knitting needle system[J]. Knitting Industries, 2019(7):17-21.
[1] . Application of 3D printing in beating-up and shedding [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 140-146.
[2] . Innovative design of jig dyeing machine automatic control system [J]. Journal of Textile Research, 2015, 36(03): 121-127.
[3] . Mode of classification Cost for RTO and the application in textile machinery [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(4): 133-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 7 -8 .