Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (01): 89-95.doi: 10.13475/j.fzxb.20210909107

• Textile Engineering • Previous Articles     Next Articles

Study on low-carbon and energy-saving cold pad-batch bleaching treatment of cotton spunlaced nonwoven

SUN Ting1, ZHANG Ruquan1,2(), TANG Zijie1, TU Hu1,2, HU Min1,2   

  1. 1. College of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Key Laboratory Base of New Textile Materials and Advanced Processing Technology,Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2021-09-26 Revised:2021-11-02 Online:2022-01-15 Published:2022-01-28
  • Contact: ZHANG Ruquan E-mail:zhangruquan@wtu.edu.cn

Abstract:

As a bid to achieve the carbon neutrality and carbon emission peak in the textile industry, the influence of weight loss, water absorption, whiteness, residual pH value and COD value ws investigated by analysing alkali oxygen concentration, cold pad-batch time, hydrogen peroxide activator concentration, different treatment methods, as well as the microstructure of cotton spunlaced nonwoven fabrics. The results showed that the production cycle of hydrogen peroxide activator cold pad-batch was 4 h shorter than that of alkali oxygen cold pad-batch, and in addition the temperature was 60 ℃ lower than high temperature alkali oxygen process and whiteness was only decreased by 0.41%. The COD value increased by only 104 mg/L, with both the residual pH value and foam height meeting the requirements. Cold pad-batch bleaching technique with the advantages of low carbon and energy saving demonstrated great potential for replacing the high-temperature alkaline oxygen treatment process.

Key words: cotton spunlaced nonwoven, degreasing and bleaching, cold pad-batch, green and low-carbon, hydrogen peroxide activator

CLC Number: 

  • TS174.8

Tab.1

Sample parameter for each category"

样品编号 处理方式 质量浓度配比 处理条件
A1 未脱漂
A2 高温碱氧 4:6:2:0:0 90 ℃,1 h
A3 碱氧冷堆 4:6:2:0:0 30 ℃,12 h
A4 复合酶冷堆 0:0:2:0:5 30 ℃,8 h
A5 双氧水活性冷堆 4:6:2:2:0 30 ℃,8 h

Fig.1

SEM images of cotton spunlaced nonwoven"

Fig.2

FT-IR spectra of cotton spunlaced nonwoven"

Fig.3

Effect of various factors on weight loss rate and water absorption. (a) NaOH and H2O2 concentrations at high temperatures; (b) Alkaline oxygen with cold pad-batch treatment time; (c) Hydrogen peroxide activator with cold pad-batch treatment time; (d) Sample type"

Fig.4

Various factors on whiteness. (a) Alkaline oxygen with cold pad-batch treatment time; (b) Concentration ratio of TAED and H2O2; (c) Hydrogen peroxide activator with cold pad-batch treatment time; (d) Sample type"

Tab.2

Comparison table of energy saving and emission reduction effect and sample performance under each category"

样品
编号
COD值/
(mg·L-1)
残余液
pH值
泡沫高
度/mm
残余双氧
水含量/
(mg·L-1)
透气率/
(mm·s-1)
强力/
N
断裂伸
长率/%
A1 2 517 27.5 49.9
A2 2 540 9.11 6 2.04 2 869 21.1 59.1
A3 2 235 7.54 0.8 1.36 2 778 22.9 57.7
A4 853 7.3 1 0 2 808 18.2 68.1
A5 2 644 7.32 1.6 3.4 2 726 19.7 64.9

Tab.3

Effect table of energy saving and emission reduction under each process parameter"

质量浓度/(g·L-1) 处理时
间/h
残余液
pH值
泡沫高
度/mm
残余双氧水质量
浓度/(mg·L-1)
NaOH H2O2
4 6 8 7.32 2.0 2.04
6 6 8 8.23 0.8 2.38
4 6 12 7.31 1.6 1.70
6 6 12 8.04 0.5 1.70
4 8 8 7.15 0.4 1.02
4 8 12 7 2.0 1.36

Fig.5

Various factors on residual pH value and hydrogen peroxide content. (a) Concentration ratio of TAED and H2O2; (b) Hydrogen peroxide activator with cold pad-batch treatment time"

Fig.6

Radar maps of various categories"

[1] 连素梅, 叶曦雯, 罗忻, 等. 棉纤维结构与理化性能关系分析[J]. 棉花科学, 2018, 40(1): 48-52.
LIAN Sumei, YE Xiwen, LUO Xin, et al. Analysis of relationship between cotton fiber structure and physical and chemical properties[J]. Cotton Sciences, 2018, 40(1): 48-52.
[2] 房宽峻. 棉织物无烧碱前处理工艺:实现高效技能环保的有效途径[J]. 纺织导报, 2010(3): 69-73.
FANG Kuanjun. Non caustic soda pretreatment technology of cotton fabric: an effective way to realize high efficiency and environmental protection[J]. China Textile Leader, 2010(3): 69-73.
[3] 蒋佩林, 俞晶颖, 金平良, 等. 脱漂工艺对医用水刺全棉非织造材料性能的影响[J]. 纺织学报, 2017, 38(10): 88-93.
JIANG Peilin, YU Jingying, JIN Pingliang, et al. Effect of bleaching process on properties of medical spunlaced cotton nonwovens[J]. Journal of Textile Research, 2017, 38(10): 88-93.
[4] 渠少波, 寇笃敬, 文卓. 棉针织物低温前处理工艺的研究[J]. 染整技术, 2019, 41(9): 42-44.
QU Shaobo, KOU Dujing, WEN Zhuo. Study on low temperature pretreatment technology of cotton knitted fabric[J]. Textile Dyeing and Finishing Journal, 2019, 41(9): 42-44.
[5] 张占斌, 黄锟. 牢牢把握“十四五”经济社会发展主题主线[J]. 人民论坛(学术前沿), 2020, 22:11-18.
ZHANG Zhanbin, HUANG Kun. Firmly grasp the theme of the "14th Five-year Plan" for economic and social development[J]. People's Forum (Academic Frontiers), 2020, 22:11-18.
[6] 张友国. 碳达峰、碳中和工作面临的形势与开局思路[J]. 行政管理改革, 2021(3): 77-85.
ZHANG Youguo. Carbon peak, carbon neutra-lization work facing the situation and the opening ideas[J]. Administrative Reform, 2021(3): 77-85.
[7] 陈加敏, 孟家光, 薛涛. 双氧水漂白活化剂概述[J]. 染整技术, 2016, 38(12): 6-9.
CHEN Jiamin, MENG Jiaguang, XUE Tao. Hydrogen peroxide bleaching activator overview[J]. Textile Dyeing and Finishing Journal, 2016, 38(12): 6-9.
[8] SHAO J, HUANG Y, WANG Z, et al. Cold pad-batch bleaching of cotton fabrics with a TAED/H2O2 activating system[J]. Coloration Technology, 2010, 126(2): 103-108.
doi: 10.1111/cte.2010.126.issue-2
[9] LAVRIC P K, KOVAC F, TAVCER P F, et al. Enhanced PAA bleaching of cotton by incorporating a cationic bleach activator[J]. Coloration Technology, 2007, 123(4): 230-236.
doi: 10.1111/cte.2007.123.issue-4
[10] 王俊豪, 贾荞侨, 王睿娜, 等. 活化剂对脱脂棉煮漂工艺的影响探究[J]. 纺织科学与工程学报, 2019, 36(2): 74-79.
WANG Junhao, JIA Qiaoqiao, WANG Ruina, et al. Study on the influence of activator on the cooking and bleaching process of absorbent cotton[J]. Journal of Textile Science and Engineering, 2019, 36(2): 74-79.
[11] 安刚, 曹机良, 王柯钦. 活化剂乙酰胍在棉织物冷轧堆漂白中的应用[J]. 印染, 2013(13): 10-16.
AN Gang, CAO Jiliang, WANG Keqin. Application of activator acetylguanidine in cold pile bleaching of cotton fabric[J]. China Dyeing & Finishing, 2013(13): 10-16.
[12] 刘海涛. FMEE-NOBS练漂体系在医用脱脂纱布冷堆中的应用[J]. 染整技术, 2015, 37(5): 36-38.
LIU Haitao. Application of FMEE-NOBS scouring and bleaching system in medical degreasing gauze cold reactor[J]. Textile Dyeing and Finishing Journal, 2015, 37(5): 36-38.
[13] WEI D, SUN C, WANG M, et al. Synjournal of N-[4-(dimethylalky-lammoniomethyl)benzoyl]caprolactam chlorides as cationic bleach activators for low-temperature bleaching of cotton fabric under near-neutral pH conditions[J]. Coloration Technology, 2014, 130(6): 432-436.
doi: 10.1111/cote.2014.130.issue-6
[14] ALTAY P, HAUSER P J, GUESOY N C, et al. Facile synjournal of a novel, highly effective, more sustainable and cost-effective cationic bleach activator for cotton: N-[4-(N,N,N)-triethylammoniumchloride-butyryl]caprolactam[J]. Cellulose, 2019, 26(4): 2849-2860.
doi: 10.1007/s10570-018-02224-9
[15] 刘海涛. 脂肪酸甲酯乙氧基化物在脱脂棉冷堆加工中的应用[J]. 纺织科技进展, 2015(3): 37-40.
LIU Haitao. Application of fatty acid methyl ester ethoxide in cold reactor processing of cotton[J]. Progress in Textile Science and Technology, 2015(3): 37-40.
[16] 王龙飞, 刘洁, 王庆男, 等. 锦棉混纺冷轧堆前处理工艺浅析[J]. 辽宁丝绸, 2019(3): 19-21.
WANG Longfei, LIU Jie, WANG Qingnan, et al. Preliminary analysis of cold rolling pretreatment technology of brocade cotton blended mill[J]. Liaoning Silk, 2019(3): 19-21.
[17] SAWADA K, TOKINO S, UEDA M. Bioscouring of cotton with pectinase enzyme[J]. Journal of the Society of Dyers and Colourists, 1998, 114:333-336.
doi: 10.1111/cote.1998.114.issue-11
[18] SARAVANAN D, SIVASARAVANAN S, SUDHARSHAN P M, et al. One-step process for desizing and bleaching of cotton fabrics using the combination of amylase and glucose oxidase enzymes[J]. Journal of Applied Polymer Science, 2012, 123(4): 2445-2450.
doi: 10.1002/app.34838
[19] VERENICH S, ARUMUGAM K, SHIM E, et al. Effect of cellulase pretreatment of raw and bleached cotton fibers on properties of hydroentangled nonwoven fabrics[J]. Journal of Applied Polymer Science, 2007, 105(2): 492-499.
doi: 10.1002/(ISSN)1097-4628
[1] JIANG Gaoming, ZHOU Mengmeng, ZHENG Baoping, ZHENG Peixiao, LIU Haisang. Research progress of green and low-carbon knitting technology [J]. Journal of Textile Research, 2022, 43(01): 67-73.
[2] . Comparison of the dyeing effect of reactive dyes by salt-free continuous pad-steam dyeing and cold pad-batch dyeing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 77-81.
[3] . Influence of degreasing and bleaching process on performance of pure cotton spunlaced nonwovens used for medical treatment and hygiene [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 88-93.
[4] . Cold pad-batch pretreatment and dyeing of cotton knits [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(06): 76-82.
[5] ZHOU Jia-Wei;Ping YAO;Lei XU. Fixation Rate and Process Optimization of Cold Pad-batch Dyeing on Silk Fabric with Reactive Dyes [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(4): 79-84.
[6] WANG Zhenhua;SHAO Jianzhong;XU Chunsong;LIU Jinqiang. Application of H2O2/NOBS activating system in cold pad-batch bleaching of cotton fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(7): 64-68.
[7] ZONG Ruilong;WANG Jianming;HAO Xinmin. Influence of dyeing process on the dyeing property of linen fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(1): 73-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[8] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[9] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[10] WANG Ju-ping;YIN Jia-min;PENG Zhao-qing;ZHANG Feng. Ultrasonic wave aided enzymatic washing of reactive dyed fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 93 -95 .