Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (01): 9-14.doi: 10.13475/j.fzxb.20210909606

• Fiber Materials • Previous Articles     Next Articles

Synthesis and properties of bio-based liquid crystal copolyester fiber based on p-hydroxyphenyl propionic acid

LI Longlong1, WEI Peng1,2(), WU Cuixia1, YAN Jinfei1, LOU Hejuan1, ZHANG Yifeng1,2, XIA Yumin3, WANG Yanping3, WANG Yimin3   

  1. 1. College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    2. Henan Collaborative Innovation Center of Textile and Garment Industry, Zhengzhou, Henan 450007, China
    3. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • Received:2021-09-27 Revised:2021-11-02 Online:2022-01-15 Published:2022-01-28
  • Contact: WEI Peng E-mail:appletree0322@163.com

Abstract:

In order to improve the mechanical property and thermal stability of bio-based polymers, the bio-based liquid crystal copolyester derived from 6-hydroxy-2-naphthenic acid, p-hydroxybenzoic acid and p-hydroxyphenyl propionic acid(HPPA) were studied and successfully synthesized via the one-pot melt polymerization method, and the structures and properties of the spun fibers from the bio-based liquid crystal copolyesters were prepared by melt spinning. The results show that the prepared bio-based liquid crystal copolyester is a nematic liquid crystal polymer. Its melting point is around 200 ℃, and it decreases with the increase of HPPA monomer content. High content of HPPA leads to weak melting behavior, which is not conducive to crystallization. The copolyesters show good thermal stability and high char yield, and the temperature corresponded to 5% weight loss and char yield at 700 ℃ are above 370 ℃ and 30%, respectively. The surface of the as spun copolyester fiber is smooth and uniform, the cross section has an obvious fibrillar structure. The fibers have good mechanical properties, which are negatively related to the content of HPPA.

Key words: bio-based liquid crystal polymer, melt polymerization, melt spinning, p-hydroxyphenyl propionic acid, bio-based fiber, p-hydroxybenzoic acid, copolyester fiber

CLC Number: 

  • O632

Tab.1

Composition of copolyesters%"

样品编号 HNA摩尔分数 HBA摩尔分数 HPPA摩尔分数
LCPH1 30 40 30
LCPH2 30 30 40
LCPH3 30 20 50

Fig.1

Reaction route of copolyesters"

Fig.2

FT-IR spectra of copolyester LCPH2"

Fig.3

Second DSC heating thermographs of copolyesters"

Fig.4

TGA (a) and DTG (b) curves of copolyesters"

Tab.2

Thermal stability test result of copolyesters"

样品编号 初始降解
温度/℃
最大质量损失速率
对应的温度/℃
残炭量/%
LCPH1 371 409 30
LCPH2 377 412 34
LCPH3 376 414 36

Fig.5

PLM images of copolyesters LCPH2 (×400)"

Fig.6

XRD spectra of copolyesters"

Fig.7

Dynamic rheological behavior (a)and apparent viscosity (b)under frequency scanning mode of copolyester LCPH2"

Fig.8

Surface and fracture morphology of copolyester fiber (×200)"

Fig.9

Tensile strain-stress curves of copolyesters fibers"

Tab.3

Mechanical property of copolyester fibers"

样品
编号
直径/μm 断裂强度/
GPa
弹性模量/
GPa
断裂应变/
%
LCPH1 76.88±18.07 0.35±0.04 20.80±5.76 2.62±0.47
LCPH2 146.78±12.69 0.26±0.01 13.55±1.67 2.66±0.67
LCPH3 126.99±4.78 0.19±0.02 11.46±1.18 2.00±0.36
[1] 郭姝, 邹涛, 康海澜, 等. 生物基异山梨醇聚酯的合成与性能表征[J]. 材料导报, 2018, 32(S2): 64-68.
GUO Shu, ZOU Tao, KANG Hailan, et al. Preparation and characterization of biobased copolyester containing isosorbide[J]. Materials Reports, 2008, 32(S2): 64-68.
[2] YU Long, DEAN Katherine, LI Lin. Polymer blends and composites from renewable resources[J]. Progress in Polymer Science, 2006, 31(6): 576-602.
doi: 10.1016/j.progpolymsci.2006.03.002
[3] 任静娇, 东为富, 施冬健, 等. 全生物基脂肪/芳香族不饱和共聚酯的合成及其性能研究[J]. 石油化工, 2012, 41(3): 330-334.
REN Jingjiao, DONG Weifu, SHI Dongjian, et al. Synjournal and properties of bio-based alkyl/aromatic unsaturated co-polyester[J]. Petrochemical Technology, 2012, 41(3): 330-334.
[4] THI T H, MATSUSAKI M, SHI D, et al. Synjournal and properties of coumaric acid derivative homo-polymers[J]. J Biomater Sci Polym Ed, 2008, 19(1): 75-85.
doi: 10.1163/156856208783227668
[5] KANEKO T, THI T H, SHI D J, et al. Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers[J]. Nat Mater, 2006, 5(12): 966-970.
doi: 10.1038/nmat1778
[6] PICKEN S J, SIKKEMA D J, BOERSTOEL H, et al. Liquid crystal main-chain polymers for high-performance fibre applications[J]. Liquid Crystals, 2011, 38(11/12): 1591-1605.
doi: 10.1080/02678292.2011.624367
[7] HATUI G, SAHOO S, KUMAR D C, et al. Effect of nanosilica and polyphosphazene elastomer on the in situ fibrillation of liquid crystalline polymer (LCP) and thermo-mechanical properties of polybutylene terephthalate (PBT)/LCP blend system[J]. Materials & Design, 2012, 42:184-191.
doi: 10.1016/j.matdes.2012.05.052
[8] JAPE S P, DESHPANDE V D, Investigation into the morphology, crystallization and melting behaviour of nylon 6,6/LCP blends[J]. Journal of Thermal Analysis and Calorimetry, 2018, 136(3): 1103-1116.
doi: 10.1007/s10973-018-7733-6
[9] WEI Peng, WANG Li, HUANG Shuohan, et al. Synjournal and characterization of novel thermotropic aromatic-aliphatic biodegradable copolyesters containing D,L-lactic acid (LA), poly butylene terephthalate (PBT) and biomesogenic units[J]. Polymer-Plastics Technology and Engineering, 2014, 53(16): 1697-1705.
doi: 10.1080/03602559.2014.919655
[10] DU Jie, FANG Yuanyuan, ZHENG Yubin. Synjournal, characterization and biodegradation of biodegradable-cum-photoactive liquid-crystalline copolyesters derived from ferulic acid[J]. Polymer, 2007, 48(19): 5541-5547.
doi: 10.1016/j.polymer.2007.07.040
[11] 董奎勇, 杨婷婷, 王学利, 等. 生物基聚酯与聚酰胺纤维的研发进展[J]. 纺织学报, 2020, 41(1): 174-183.
DONG Kuiyong, YANG Tingting, WANG Xueli, et al. Research and development progress of bio-based polyester and polyamide fibers[J]. Journal of Textile Research, 2020, 41(1): 174-183.
doi: 10.1177/004051757104100215
[12] WEI Peng, CAKMAK Miko, CHEN Yuwei, et al. Aromatic liquid crystalline copolyesters with low Tm and high Tg: synjournal, characterization, and properties[J]. Journal of Applied Polymer Science, 2014, 131(13).40487.
[13] WEI Peng, WANG Yanping, XIA Yumin, et al. Synjournal and properties of novel photocrosslinkable aromatic-aliphatic liquid crystal copolyesters based on poly(ethylene glycol) and cinnamic acid[J]. Liquid Crystals, 2018, 45(2): 176-184.
[14] WEI Peng, CAKMAK M, CHEN Yuwei, et al. The influence of bisphenol AF unit on thermal behavior of thermotropic liquid crystal copolyesters[J]. Thermochimica Acta, 2014, 586:45-51.
doi: 10.1016/j.tca.2014.04.008
[15] SOMMA E, NOBILE M R. Rheology of a semi-rigid thermotropic liquid crystalline polymer[J]. Macromolecular Symposia, 2005, 228(1): 71-80.
doi: 10.1002/(ISSN)1521-3900
[16] SOMMA E, IERVOLINO R, NOBILE M R. The viscoelasticity of thermotropic liquid crystalline polymers: effects of the chemical composition[J]. Rheologica Acta, 2006, 45(4): 486-496.
doi: 10.1007/s00397-005-0080-0
[17] NARAYAN-SARATHY S, WEDLER W, LENZ R W, et al. A novel thermotropic polyester with a flexible side group: synjournal and characterization, as well as rheology of its poly(ethylene terephthalate) blends[J]. Polymer, 1995, 36(12): 2467-2471.
doi: 10.1016/0032-3861(95)97349-K
[18] KANG T K, HA C S. Syntheses and characterization of poly(ethylene terephthalate) modified with p-acetoxybenzoic acid[J]. Journal of Applied Polymer Science, 1999, 73(9): 1707-1719.
doi: 10.1002/(ISSN)1097-4628
[19] WEI Peng, LOU Hejuan, WANG Wei, et al. Synjournal and properties of wholly aromatic phosphorus-containing thermotropic liquid crystal copolyesters with excellent fibre formation ability[J]. Liquid Crystals, 2021, 48(4): 466-474.
doi: 10.1080/02678292.2020.1789768
[20] BIAN Xiangcheng, CHEN Li, WANG Junsheng, et al. A novel thermotropic liquid crystalline copolyester containing phosphorus and aromatic ether moity toward high flame retardancy and low mesophase temperature[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48(5): 1182-1189.
doi: 10.1002/pola.23878
[1] YU Jinchao, JI Hong, CHEN Kang, GAN Yu. Properties of polyether-ester/polybutylene terephthalate composite fibers prepared by side by side bicomponent melt spinning [J]. Journal of Textile Research, 2021, 42(04): 42-47.
[2] SUN Chaoxu, LIU Xiucai. Research progress on applications of bio-based polyamide 56 fibers in textile fields [J]. Journal of Textile Research, 2021, 42(04): 26-32.
[3] GUAN Fucheng, GUO Jing, LÜ Lihua, TAN Qian, SONG Jingxing, ZHANG Xin. Hydrogen bonding mechanism and properties of polyvinyl alcohol/krill protein fibers [J]. Journal of Textile Research, 2020, 41(10): 7-13.
[4] DONG Kuiyong, YANG Tingting, WANG Xueli, HE Yong, YU Jianyong. Research and development progress of bio-based polyester and polyamide fibers [J]. Journal of Textile Research, 2020, 41(01): 174-183.
[5] MO Dajie, LI Xuming, XU Zenghui. Preparation and properties of poly(3-hydroxybutyrate-co-3-hydroxyl valerate)/polylactic acid flame retardant fibersMO [J]. Journal of Textile Research, 2019, 40(05): 12-17.
[6] LI Xiaochuan, QU Qianqian, LI Xuming. Preparation and properties of polylactic acid/polypropylene blend fiber by melt spinning [J]. Journal of Textile Research, 2019, 40(03): 8-12.
[7] . Preparation and properties of high strength and high modulus polyoxymethylene fibers [J]. Journal of Textile Research, 2018, 39(10): 1-6.
[8] . Preparation and characterization of sheath-core energy storage and thermo-regulated composite fibers of polyamide 6 [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 1-8.
[9] . Preparation and characterization of low melting point polyamide [J]. Journal of Textile Research, 2016, 37(3): 6-10.
[10] . Influence of oligomer contents on melt spinning process of poly (lactic acid) [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 133-0.
[11] . Effects of electrospinning and melt spinning on surface structure of PET fibres [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(9): 1-5.
[12] WANG Yan-Ping, XIA Yu-Min, GAN Hai-Xiao, ZHU Wei-Biao, QIN Wei-Min, WANG Yi-Min. Solid-phase polycondensation and melt-spinning of aromatic copolyester [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(6): 111-115.
[13] . Structure and properties of photo-biodegradable polyethylene fibre [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(11): 1-5.
[14] SUN Yu;ZHENG Guo;ZHOU Lan. Dyeing properties of modified copolyester fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(3): 77-81.
[15] WAN Qianhua;PAN Zhijuan;LIU Yan;CHEN Jun. Fabricating methods of functional fibers containing nanoparticles [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(07): 135-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 7 -8 .
[10] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .