Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (02): 176-182.doi: 10.13475/j.fzxb.20211007907

• Dyeing and Finshing & Chemicals • Previous Articles     Next Articles

Preparation and UV shielding of rutile nano-TiO2 by induction of nanocrystal-cellulose at room temperature

JIN Yaofeng1,2,3, LIU Leigen1,2, WANG Wei1,2, LU Xin1,2,3()   

  1. 1. College of Textile and Garment Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
    2. Jiangsu Province Key Laboratory of Advanced Functional Materials, Changshu, Jiangsu 215500, China
    3. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
  • Received:2021-10-29 Revised:2021-12-07 Online:2022-02-15 Published:2022-03-15
  • Contact: LU Xin E-mail:luxin66cn@163.com

Abstract:

In order to prepare nanofiber with improved ultraviolet(UV)protection performance, rutile nano-TiO2 for UV shielding was prepared by using TiCl4 as titanium source and nanocrystal-cellulose (NCC) as template at room temperature, and the effects of reaction temperature, reaction time and the dosage of titanium tetrachloride on the mass fraction of rutile nano-TiO2 were studied. Orthogonal experiments were adopted to optimize the preparation conditions of nano-TiO2, where reaction temperature was 25 ℃, reaction time was 1 h and dosage of TiCl4 was 3 mL, and then the microstructure and UV resistance of the nano-TiO2 were characterized. The results showed that the pure rutile nano-TiO2 was well dispersed and has a spiny spherical shape with a particle size of 100-250 nm. The cotton fabric treated with nano-TiO2 offers UV resistance with UPF>40, which is regarded as excellent. The rutile nano-titanium dioxide prepared by this method has good UV shielding performance, indicating that rutile nano-TiO2 prepared by this method has good UV shielding property.

Key words: nanocrystal cellulose, TiCl4, nano-TiO2, rutile, UV resistance

CLC Number: 

  • TS195.5

Fig.1

XRD patterns of samples at different reaction temperatures"

Tab.1

Contents of rutile nano-TiO2 in samples at different reaction temperatures"

试验编号 反应温度/℃ 金红石型TiO2质量分数/%
1-1 25 100
1-2 40 73.97
1-3 50 57.47
1-4 60 54.39
1-5 70 0

Fig.2

XRD patterns of samples under different reaction time"

Tab.2

Contents of rutile nano-TiO2 in samples with different reaction time"

试验编号 反应时间/h 金红石型TiO2质量分数/%
2-1 0.5 0
2-2 1 43.57
2-3 4 59.72
2-4 7 100
2-5 24 56.06

Fig.3

XRD patterns of samples with different amount of TiCl4"

Tab.3

Contents of rutile nano-TiO2 in samples with different TiCl4 dosage"

试验编号 TiCl4用量/mL 金红石型TiO2含量/%
3-1 0.5 43.35
3-2 1 55.21
3-3 2 66.90
3-4 3 100
3-5 4 100

Tab.4

Orthogonal experiment and results"

试验
编号
A
反应温
度/℃
B
反应时
间/h
C
TiCl4
量/mL
金红石型
的含量/%
1 25 1 1 73.31
2 25 4 2 100
3 25 7 3 100
4 50 1 2 100
5 50 4 3 100
6 50 7 1 56.74
7 70 1 3 65.56
8 70 4 1 0
9 70 7 2 48.35
K1j 273.31 238.87 130.05
K2j 256.74 200 248.35
K3j 113.91 205.09 265.56
-K1j 91.10 79.62 43.35
-K2j 85.58 66.67 82.78
-K3j 37.97 68.36 88.52
主次顺序 A>C>B
最优水平 A1 B1 C3
最优组合 A1B1C3

Fig.4

XRD patterns of rutile nano-TiO2 under optimal process conditions and different reaction conditions"

Fig.5

SEM and TEM pictures of samples. (a) SEM; (b) Enlarge image of (a); (c) TEM; (d) Enlarge imoge of (c)"

Fig.6

Particle size distribution of samples"

Fig.7

TG and DTG curves of rutile nano-TiO2"

Fig.8

XPS spectra of rutile nano-TiO2. (a) XPS spectrum; (b) C 1s spectrogram; (c) O 1s spectrogram; (d) Ti 2p spectrogram"

Tab.5

UV shielding properties of rutile nano-TiO2"

样品 紫外线透过率/% UPF
T(UVA) T(UVB)
平纹机织棉织物 15.81 9.80 9.19
纬平针棉织物 18.34 10.24 8.34
处理后平纹机织棉织物 3.28 1.61 56.53
处理后纬平针棉织物 4.40 1.82 49.78
[1] 吴健春. 金红石纳米二氧化钛在涂料中的应用[J]. 钢铁钒钛, 2021, 42(1): 43-49.
WU Jianchun. Application of rutile nano titanium dioxide in coatings[J]. Iron Steel Vanadium Titanium, 2021, 42(1): 43-49.
[2] TAREK M A E, BASANT A M. ZnO and TiO2 nanoparticles as textile Protecting agents against UV radiation: a review[J]. Asian Journal of Chemical Sciences, 2018, 4(1): 1-14.
[3] ATHIR N, SHAH S A A, SHEHZAD F K, et al. Rutile TiO2 integrated zwitterion polyurethane composite films as an efficient photostable food packaging material[J]. Reactive & Functional Polymers, 2020, 157:104733.
[4] LI Y Y, LIU J P, JIA Z J. Morphological control and photodegradation behavior of rutile TiO2 prepared by a low-temperature process[J]. Materials Letters, 2006, 60(13/14): 1753-1757.
doi: 10.1016/j.matlet.2005.12.012
[5] 周忠诚, 阮建明, 邹俭鹏 等. 四氯化钛低温水解直接制备金红石型纳米二氧化钛[J]. 稀有金属, 2006(5): 653-656.
ZHOU Zhongcheng, RUAN Jianming, ZOU Jianpeng, et al. Direct preparation of rutile nano titanium dioxide by low temperature hydrolysis of titanium tetrach-loride[J]. Chinese Journal of Raremetals, 2006(5): 653-656.
[6] GUO D L, ZHANG J M, SHA L ZG, et al. Preparation and characterization of lignin-TiO2 UV shielding composite material by induced synjournal with nanofibrillated cellulose[J]. Bioresources, 2020, 15(4): 7374-7389.
doi: 10.15376/biores
[7] PENG, X Y, DING E Y. Low-temperature synjournal of flower-like TiO2 nanocrystals[J]. Micro & Nano Letters, 2011, 6(12): 998-1001.
doi: 10.1049/mnl.2011.0569
[8] ZHOU Y, DING E Y, LI W D. Synjournal of TiO2nanocubes induced by cellulose nanocrystal (CNC) at low temperature[J]. Materials Letters, 2007, 61(28): 5050-5052.
doi: 10.1016/j.matlet.2007.04.001
[9] BONDESON D, MATHEW A, OKSMAN K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis[J]. Cellulose, 2006, 13(2): 171-180.
doi: 10.1007/s10570-006-9061-4
[10] KUMAR K N P. POROUS nanocomposites as catalyst supports: part I: second phase stabilization, thermal stability and anatase-to-rutile transformation in titania-alumina nanocomposites[J]. Applied Catalysis A: General, 1994, 119(1): 163-183.
doi: 10.1016/0926-860X(94)85032-1
[11] SPURR R A, MYERS H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer[J]. Analytical Chemistry. 1957, 29(5): 760-762.
doi: 10.1021/ac60125a006
[12] ARULARASU M V, HARB M, SUNDARAM R. Synjournal and characterization of cellulose/TiO2 nanocomposite: evaluation of in vitro antibacterial and in silico molecular docking studies[J]. Carbohydrate Polymers, 2020, 249.
[13] HABIBI S and JAMSHIDI M. Sol-gel synjournal of carbon-doped TiO2 nanoparticles based on microcrystalline cellulose for efficient photocatalytic degradation of methylene blue under visible light[J]. Environmental Technology, 2020, 41(24): 3233-3247.
doi: 10.1080/09593330.2019.1604815
[14] ZHAO J Z, WAN Z C, WANG L W, et al. Effect of nuclei on the formation of rutile titania[J]. Journal of Materials Science Letters, 1998, 17(22): 1867-1869.
doi: 10.1023/A:1006654916720
[15] SANTOS J G, OGASAWARA T, CORREA R A. Synjournal of nanocrystalline rutile-phase titania at low temperatures[J]. Materials Science Poland, 2009, 27(4): 1067-1076.
[16] NAVROTSKY A, KLEPPA, O J. Enthalpy of the Anatase-Rutile Transformation[J]. Journal of the American Ceramic Society, 1967, 50(11): 626.
doi: 10.1111/jace.1967.50.issue-11
[17] CHEN H M, MA J M, ZHAO Z G, et al. Hydrothermal preparation of uniform nanosize rutile and anatase particles[J]. Chemistry of Materials, 1995, 7(4): 663-671.
doi: 10.1021/cm00052a010
[1] TAN Yanjun, HUO Qian, LIU Shurui. Preparation and ultraviolet light resistance of poly(p-phenylene benzoxazole) fiber coated with nano titanium dioxide [J]. Journal of Textile Research, 2021, 42(07): 69-75.
[2] LI Yifei, ZHENG Min, CHANGZHU Ningzi, LI Liyan, CAO Yuanming, ZHAI Wangyi. Cotton knitted fabrics treated with two-dimensional transitional metal carbide Ti3C2Tx and property analysis [J]. Journal of Textile Research, 2021, 42(06): 120-127.
[3] ZHAO Yongfang, QIAN Jianhua, SUN Liying, PENG Huimin, MEI Min. Preparation and properties of cotton fabric modified by silver nanowires [J]. Journal of Textile Research, 2021, 42(05): 115-121.
[4] CHENG Shijie, WANG Chenyang, ZHANG Hongwei, ZUO Danying. Effect of boron nitrogen doped carbon dots on ultraviolet-protection of cotton fabrics [J]. Journal of Textile Research, 2020, 41(06): 93-98.
[5] WEI Lingli, ZOU Qinshan, WANG Lu, LUO Jing, XIA Xin. Preparation of fluorine-free water repellent treated wool/cashmere fabrics [J]. Journal of Textile Research, 2019, 40(09): 102-107.
[6] CHEN Haizhen. Influence of nano-TiO2 on crystallization kinetics of polyester [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(4): 25-29.
[7] LU Yanhua;LIN Hong;CHEN Yuyue;ZHEN Wen. Effect of nano-TiO2 and chitosan on the structure and properties of tussah silk [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(8): 15-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JI Changchun, ZHANG Kaiyuan, WANG Yudong, WANG Xinhou. Numerical calculation and analysis of three-dimensional flow field in melt-blown process[J]. Journal of Textile Research, 2019, 40(08): 175 -180 .
[2] SUN Guangwu, LI Jiecong, XIN Sanfa, WANG Xinhou. Diameter prediction of melt-blown fiber based on non-Newtonian fluid constitutive equations[J]. Journal of Textile Research, 2019, 40(11): 20 -25 .
[3] DANG Danyang, CUI Lingyan, WANG Liang, LIU Yong. Preparation and properties of cellulose nanofiber/montmorillonite composite aerogels[J]. Journal of Textile Research, 2020, 41(02): 1 -6 .
[4] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene/polyester bicomponent micro-nanofiber webs via melt blowing process[J]. Journal of Textile Research, 2020, 41(02): 26 -32 .
[5] LI Huiqin, ZHANG Nan, WEN Xiaodan, GONG Jixian, ZHAO Xiaoming, WANG Zhishuai. Progress of noise reduction product based on fiber materials[J]. Journal of Textile Research, 2020, 41(03): 175 -181 .
[6] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(03): 168 -174 .
[7] SUN Huanwei, ZHANG Heng, ZHEN Qi, ZHU Feichao, QIAN Xiaoming, CUI Jingqiang, ZHANG Yifeng. Filtrations of propylene-based micro-nano elastic filters via melt blowing process[J]. Journal of Textile Research, 2020, 41(10): 20 -28 .
[8] WANG Yudong, JI Changchun, WANG Xinhou, GAO Xiaoping. Design and numerical analysis of new types of melt blowing slot-dies[J]. Journal of Textile Research, 2021, 42(07): 95 -100 .
[9] GAO Meng, WANG Zengyuan, LOU Qiwei, CHEN Gangjin. Characteristics of charge capture of melt-blown polypropylene electret nonwovens by corona charging[J]. Journal of Textile Research, 2021, 42(09): 52 -58 .
[10] HU Qiaole, BIAN Guofeng, QIU Yiping, WEI Yi, XU Zhenzhen. Sound insulation properties of honeycomb sandwich structure composite for high-speed train floors[J]. Journal of Textile Research, 2021, 42(10): 75 -83 .