Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (02): 44-52.doi: 10.13475/j.fzxb.20211101309
• Fiber Materials • Previous Articles Next Articles
WU Jiayin1,2, WANG Hanchen1,2, HUANG Biao1, LU Qilin1,2()
CLC Number:
[1] | GAHARWAR A K, PEPPAS N A, KHADEMHOSSEINI A. Nanocomposite hydrogels for biomedical applica-tions[J]. Biotechnology & Bioengineering, 2014, 111(3): 441-453. |
[2] |
HOFFMAN A S. Hydrogels for biomedical applica-tions[J]. Advanced Drug Delivery Reviews, 2012, 64:18-23.
doi: 10.1016/j.addr.2012.09.010 |
[3] |
YAN J J, WANG H, ZHOU Q H, et al. Reversible and multisensitive quantum dot gels[J]. Macromolecules, 2011, 44(11): 4306-4312.
doi: 10.1021/ma200591w |
[4] | NISHIYABU R, USHIKUBO S, KAMIYA Y, et al. A boronate hydrogel film containing organized two-component dyes as a multicolor fluorescent sensor for heavy metal ions in water[J]. Journal of Materials Chemistry A, 2014, 2:15846-15852. |
[5] | HASSAN C M, PEPPAS N A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods[J]. Advances in Polymer Science, 2000, 153:37-65. |
[6] |
OSSIPOV D, PISKOUNOVA S, HILBORN J. Poly(vinyl alcohol) cross-linkers for in vivo injectable hydrogels[J]. Macromolecules, 2008, 41(11): 3971-3982.
doi: 10.1021/ma800332c |
[7] | QU J, HUAN G, CHEN Y, et al. Coating gigaporous polystyrene microspheres with cross-linked poly(vinyl alcohol) hydrogel as a rapid protein chromatography matrix[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12752-12760. |
[8] |
STAUFFER S R, PEPPAST N A. Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing[J]. Polymer, 1992, 33(18): 3932-3936.
doi: 10.1016/0032-3861(92)90385-A |
[9] |
HASSAN C M, PEPPAS N A. Cellular PVA hydrogels produced by freeze/thawing[J]. Journal of Applied Polymer Science, 2000, 76(14): 2075-2079.
doi: 10.1002/(ISSN)1097-4628 |
[10] |
YOKOYAMA F, ACHIFE E C, MOMODA J, et al. Morphology of optically anisotropic agarose hydrogel prepared by directional freezing[J]. Colloid and Polymer Science, 1990, 268(6): 552-558.
doi: 10.1007/BF01410297 |
[11] |
GUTIERREZ M C, JOBBAGY M, RAPUN N, et al. A biocompatible bottom-up route for the preparation of hierarchical biohybrid materials[J]. Advanced Materials, 2006, 18(9): 1137-1140.
doi: 10.1002/(ISSN)1521-4095 |
[12] | 张松华, 熊明诚, 王梓, 等. 基于机械力化学作用制备荧光纳米纤维素[J]. 化工进展, 2020, 39(4): 1405-1413. |
ZHANG Songhua, XIONG Mingcheng, WANG Zi, et al. Preparation of fluorescent cellulose nanocrystals based on mechanical force chemical effect[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1405-1413. | |
[13] |
DEMIREL G B, CAYKARA T, DEMIRAY M, et al. Effect of pore-forming agent type on swelling properties of macroporous poly(N-[3-(dimethylaminopropyl)]-methacrylamide-co-acrylamide) hydrogels[J]. Journal of Macromolecular Science Part A, 2008, 46(1): 58-64.
doi: 10.1080/10601320802515316 |
[14] |
TANG H, BUTCHOSA N, ZHOU Q. A transparent, hazy, and strong macroscopic ribbon of oriented cellulose nanofibrils bearing poly(ethylene glycol)[J]. Advanced Materials, 2015, 27(12): 2070-2076.
doi: 10.1002/adma.v27.12 |
[15] |
FORTUNATI E, PUGLIA D, LUZI F, et al. Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I[J]. Carbohydrate Polymers, 2013, 97(2): 825-836.
doi: 10.1016/j.carbpol.2013.03.075 |
[16] | MANSUR H S, SADAHIRA C M, SOUZA A N, et al. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde[J]. Materials Science & Engineering C, 2008, 28(4): 539-548. |
[17] |
ABITBOL T, JOHNSTONE T, QUINN T M, et al. Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing[J]. Soft Matter, 2011, 7(6): 2373-2379.
doi: 10.1039/c0sm01172j |
[18] | ZHANG S, ZHANG Y, LI B, et al. One-step preparation of a highly stretchable, conductive, and transparent poly(vinyl alcohol)-phytic acid hydrogel for casual writing circuits[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32441-32448. |
[19] |
LIU D, SUN X, TIAN H, et al. Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites[J]. Cellulose, 2013, 20(6): 2981-2989.
doi: 10.1007/s10570-013-0073-6 |
[20] |
CHEN K, ZHANG S, LI A, et al. Bioinspired interfacial chelating-like reinforcement strategy toward mechanically enhanced lamellar materials[J]. Acs Nano, 2018, 12(5): 4269-4279.
doi: 10.1021/acsnano.7b08671 |
[21] |
RAMBABU N, PANTHAPULAKKAL S, SAIN M, et al. Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films[J]. Industrial Crops and Products, 2016, 83:746-754.
doi: 10.1016/j.indcrop.2015.11.083 |
[22] | DUFRESNE A. Nanocellulose: potential reinforcement in composites[M]. London: Royal Society of Chemistry, 2012: 1-32. |
[23] |
ABIDI N, CABRALES L, HAIGLER C H. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FT-IR spectroscopy[J]. Carbohydrate Polymers, 2014, 100:9-16.
doi: 10.1016/j.carbpol.2013.01.074 |
[24] |
DEEPA B, ABRAHAM E, CORDEIRO N, et al. Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study[J]. Cellulose, 2015, 22(2): 1075-1090.
doi: 10.1007/s10570-015-0554-x |
[25] | CUNHA M A A D, CONVERTI A, SANTOS J C, et al. PVA-hydrogel entrapped Candida guilliermondii for xylitol production from sugarcane hemicellulose hydrolysate[J]. Applied Biochemistry & Biotechnology, 2009, 157(3): 527-537. |
[26] | 孟立山, 詹秀环, 姚新建. 聚乙烯醇水凝胶的制备及其溶胀性能[J]. 化工技术与开发, 2010, 39(8): 13-14. |
MENG Lishan, ZHAN Xiuhuan, YAO Xinjian. Study on surface texturization and properties of monocrystalline silicon-based solar cells[J]. Technology & Development of Chemical Industry, 2010, 39(8): 13-14. | |
[27] | 顾雪梅, 安燕, 殷雅婷, 等. 水凝胶的制备及应用研究[J]. 广州化工, 2012, 40(10): 11-13. |
GU Xuemei, AN Yan, YIN Yating, et al. Preparation and application of hydrogel[J]. Guangzhou Chemical Industry, 2012, 40(10): 11-13. | |
[28] | SANNINO A, NETTI P A, MENSITIERI G, et al. Designing microporous macromolecular hydrogels for biomedical applications: a comparison between two techniques[J]. Composites Science & Technology, 2003, 63(16): 2411-2416. |
[29] |
SPILLER K L, LAURENCIN S J, CHARLTON D, et al. Superporous hydrogels for cartilage repair: evaluation of the morphological and mechanical properties[J]. Acta Biomaterialia, 2008, 4(1): 17-25.
doi: 10.1016/j.actbio.2007.09.001 |
[30] |
SHI X, HU Y, TU K, et al. Electromechanical polyaniline-cellulose hydrogels with high compressive strength[J]. Soft Matter, 2013, 9(42): 10129-10134.
doi: 10.1039/c3sm51490k |
[31] |
TAKESHITA H, KANAYA T, NISHIDA K, et al. Gelation process and phase separation of PVA solutions as studied by a light scattering technique[J]. Macromolecules, 1999, 32(23): 7815-7819.
doi: 10.1021/ma990565j |
[32] |
TAKAHASHI N, KANAYA T, NISHIDA K, et al. Effects of cononsolvency on gelation of poly(vinyl alcohol) in mixed solvents of dimethyl sulfoxide and water[J]. Polymer, 2003, 44(15): 4075-4078.
doi: 10.1016/S0032-3861(03)00390-2 |
[33] |
RICCIARDI R, AURIEMMA F, DE ROSA C, et al. X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques[J]. Macromolecules, 2004, 37(5): 1921-1927.
doi: 10.1021/ma035663q |
[34] |
LAM E, MALE K B, CHONG J H, et al. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose[J]. Trends in Biotechnology, 2012, 30(5): 283-90.
doi: 10.1016/j.tibtech.2012.02.001 |
[35] | KIM S, SEO J, PARK S Y. Torsion-induced fluorescence quenching in excited-state intramolecular proton transfer (ESIPT) dyes[J]. Journal of Photochemistry & Photobiology A Chemistry, 2007, 191(1): 19-24. |
[36] | SHIZUKA H. Excited-state proton-transfer reactions and proton-induced quenching of aromatic compounds[J]. Accchemres, 1985, 18(5): 141-147. |
[1] | LIU Xinhua, LIU Hailong, FANG Yinchun, YAN Peng, HOU Guangkai. Preparation and properties of flame retardant polyester/cotton blended fabrics by layer-by-layer assemblying polyethylenimine/phytic acid [J]. Journal of Textile Research, 2021, 42(11): 103-109. |
[2] | LIN Shenggen, LIU Xiaohui, SU Xiaowei, HE Ju, REN Yuanlin. Preparation and properties of Lyocell fibers and fabrics modified with new phytic acid based flame retardant [J]. Journal of Textile Research, 2021, 42(07): 25-30. |
[3] | YING Lili, LI Changlong, WANG Zongqian, WANG Dengfeng, WU Kaiming, XIE Wei, CHENG Huan. Modification of down by zirconium ion with phytic acid and its thermal insulation performance [J]. Journal of Textile Research, 2020, 41(10): 94-100. |
[4] | XU Ailing, WANG Chunmei. Ammonium modification of phytic acid and flame retardant finishing of Lyocell fabric [J]. Journal of Textile Research, 2020, 41(02): 83-88. |
|