Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (05): 49-56.doi: 10.13475/j.fzxb.20220103408

• Invited Column: Expert Opinion of the 11th China Textile Academic Conferenc • Previous Articles     Next Articles

Progress in recycling waste natural fiber textiles and high-value utilization strategy

FAN Wei1,2(), LIU Hongxia1,2, LU Linlin1,2, DOU Hao1,2, SUN Yanli1,2   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2022-01-14 Revised:2022-02-17 Online:2022-05-15 Published:2022-05-30

Abstract:

In order to improve the recycling rate of waste natural fiber textiles and reduce environmental pollution and resource waste, the current recycling technologies of waste natural fiber textiles were reviewed from four perspectives,i.e. physical method, chemical method, biological method and energy method. The research progress and suitable types and grades of waste textiles for each method were analyzed. In view of the complex components of waste textiles, unclear structure-activity relationship, high recycling cost, low added value and poor consumer acceptance of recycling products, this review proposes to emphasize breakthroughs in sorting and identification technology of waste textiles, structure-activity relationship, low-cost recycling technology, high-value recycling strategy, policies and regulations on the promotion and use of recycling products in future studies, in order to promote the industrialization pace of waste natural fiber textiles.

Key words: waste textile, nature fiber, recycling technology, high-value recycling

CLC Number: 

  • TS102.6
[1] YOUSEF S, TATARIANTS M, TICHONOVAS M, et al. A new strategy for using textile waste as a sustainable source of recovered cotton[J]. Resources Conservation and Recycling, 2019, 145: 359-369.
doi: 10.1016/j.resconrec.2019.02.031
[2] TELLI A, BABAARSLAN O. Usage of recycled cotton and polyester fibers for sustainable staple yarn technology[J]. Tekstil Ve Konfeksiyon, 2017, 27(3): 224-233.
[3] HU Y Z, DU C Y, LEU S Y, et al. Valorisation of textile waste by fungal solid state fermentation: an example of circular waste-based biorefinery[J]. Resources Conservation and Recycling, 2018, 129: 27-35.
doi: 10.1016/j.resconrec.2017.09.024
[4] SANDIN G, PETERS G M. Environmental impact of textile reuse and recycling: a review[J]. Journal of Cleaner Production, 2018, 184: 353-365.
doi: 10.1016/j.jclepro.2018.02.266
[5] 杜欢政, 陆莎, 孙荐, 等. 生活源废旧纺织品高值化回收再利用体系的构建研究[J]. 纺织学报, 2021, 42(6): 1-7.
DU Huanzheng, LU Sha, SUN Jian, et al. Research on constructing high-value recycling systems for municipal textile wastes[J]. Journal of Textile Research, 2021, 42(6): 1-7.
doi: 10.1177/004051757204200101
[6] SILVA T L, CAZETTA A L, SOUZA P S C, et al. Mesoporous activated carbon fibers synthesized from denim fabric waste: efficient adsorbents for removal of textile dye from aqueous solutions[J]. Journal of Cleaner Production, 2018, 171: 482-490.
doi: 10.1016/j.jclepro.2017.10.034
[7] 汪少朋, 吴宝宅, 何洲. 废旧纺织品回收与资源化再生利用技术进展[J]. 纺织学报, 2021, 42(8): 34-40.
WANG Shaopeng, WU Baozhai, HE Zhou. Technology progress in recycling and reuse of waste textiles[J]. Journal of Textile Research, 2021, 42(8): 34-40.
[8] 史晟, 戴晋明, 牛梅, 等. 废旧纺织品的再利用[J]. 纺织学报, 2011, 32(11): 147-152.
SHI Sheng, DAI Jinming, NIU Mei, et al. Renewability of waste textile[J]. Journal of Textile Research, 2011, 32(11): 147-152.
[9] WANASSI B, AZZOUZ B, BEN H M. Value-added waste cotton yarn: optimization of recycling process and spinning of reclaimed fibers[J]. Industrial Crops and Products, 2016, 87: 27-32.
doi: 10.1016/j.indcrop.2016.04.020
[10] GRGAC S F, TARBUK A, DEKANIC T, et al. The chitosan implementation into cotton and polyester/cotton blend fabrics[J]. Materials, 2020, 13(7): 1616.
doi: 10.3390/ma13071616
[11] ESTEVE-TURRILLAS F A, DE L G M. Environmental impact of recover cotton in textile industry[J]. Resources, Conservation and Recycling, 2017, 116: 107-115.
doi: 10.1016/j.resconrec.2016.09.034
[12] PATNAIK A, MVUBU M, MUNIYASAMY S, et al. Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies[J]. Energy and Buildings, 2015, 92: 161-169.
doi: 10.1016/j.enbuild.2015.01.056
[13] ALI A, SHAKER K, NAWAB Y, et al. Hydrophobic treatment of natural fibers and their composites: a review[J]. Journal of Industrial Textiles, 2018, 47(8): 2153-2183.
doi: 10.1177/1528083716654468
[14] HAULE L V, CARR C M, RIGOUT M. Preparation and physical properties of regenerated cellulose fibres from cotton waste garments[J]. Journal of Cleaner Production, 2016, 112: 4445-4451.
doi: 10.1016/j.jclepro.2015.08.086
[15] MISHRA R, BEHERA B, MILITKY J. Recycling of textile waste into green composites: performance characterization[J]. Polymer Composites, 2014, 35(10): 1960-1967.
doi: 10.1002/pc.22855
[16] GOVINDARAJU R, JAGANNATHAN S. Optimization of mechanical properties of silk fiber-reinforced polypropylene composite using box-behnken experimental design[J]. Journal of Industrial Textiles, 2016, 47(5): 602-621.
doi: 10.1177/1528083716667257
[17] RANAKOTI L, RAKESH P K. Physio-mechanical characterization of tasar silk waste/jute fiber hybrid composite[J]. Composites Communications, 2020, 22: 100526.
doi: 10.1016/j.coco.2020.100526
[18] WEI B, XU F, AZHAR S W, et al. Fabrication and property of discarded denim fabric/polypropylene composites[J]. Journal of Industrial Textiles, 2014, 44(5), 798-812.
doi: 10.1177/1528083714550055
[19] FAN W, YUAN L J, D'SOUZA N, et al. Enhanced mechanical and radar absorbing properties of carbon/glass fiber hybrid composites with unique 3D orthogonal structure[J]. Polymer Testing, 2018, 69: 71-79.
doi: 10.1016/j.polymertesting.2018.05.007
[20] MENG X, FAN W, MAHARI W A W, et al. Production of three-dimensional fiber needle-punching composites from denim waste for utilization as furniture materials[J]. Journal of Cleaner Production, 2021, 281: 125321.
doi: 10.1016/j.jclepro.2020.125321
[21] LU L L, FAN W, MENG X, et al. Modal analysis of 3D needled waste cotton fiber/epoxy composites with experimental and numerical methods[J]. Textile Research Journal, 2020, 91(3/4): 358-372.
doi: 10.1177/0040517520944477
[22] LEE C K, CHO M S, KIM I H, et al. Preparation and physical properties of the biocomposite, cellulose diacetate/kenaf fiber sized with poly(vinyl alcohol)[J]. Macromolecular Research, 2010, 18(6): 566-570.
doi: 10.1007/s13233-010-0611-0
[23] XIONG R, ZHNG X X, TIAN D, et al. Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics[J]. Cellulose, 2012, 19(4): 1189-1198.
doi: 10.1007/s10570-012-9730-4
[24] KENNED J J, SANKARANARAYANASAMY K, KUMAR C S. Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: a review[J]. Polymers and Polymer Composites, 2020, 29 (7): 1011-1038.
doi: 10.1177/0967391120942419
[25] OZTURK B, PARKINSON C, GONZALEZ-MIQUEL M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents[J]. Separation and Purification Technology, 2018, 206: 1-13.
doi: 10.1016/j.seppur.2018.05.052
[26] 谢妍妍, 柴云, 张普玉. 离子液体溶解纤维素的研究[J]. 化学通报, 2020, 9: 1104-1112.
XIE Yanyan, CHAI Yun, ZHANG Puyu. Study on dissolving cellulose by ionic liquids[J]. Chemistry, 2020, 9: 1104-1112.
[27] WILKES J S. A short history of ionic liquids-from molten salts to neoteric solvents[J]. Green Chemistry, 2002, 4(2): 73-80.
doi: 10.1039/b110838g
[28] CAI J, ZHANG L N, ZHOU J P, et al. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties[J]. Advanced Materials, 2007, 19(6): 821-825.
doi: 10.1002/adma.200601521
[29] AGATE S, TYAGI P, NAITHANI V, et al. Innovating generation of nanocellulose from industrial hemp by dual asymmetric centrifugation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(4): 1850-1858.
[30] AHUJA D, KAUSHIK A, SINGH M. Simultaneous extraction of lignin and cellulose nanofibrils from waste jute bags using one pot pre-treatment[J]. International Journal of Biological Macromolecules, 2018, 107: 1294-1301.
doi: 10.1016/j.ijbiomac.2017.09.107
[31] PACAPHOL K, AHT-ONG D. Preparation of hemp nanofibers from agricultural waste by mechanical defibrillation in water[J]. Journal of Cleaner Production, 2017, 142: 1283-1295.
doi: 10.1016/j.jclepro.2016.09.008
[32] TUERXUN D, PULINGAM T, NORDIN N I, et al. Synthesis, characterization and cytotoxicity studies of nanocrystalline cellulose from the production waste of rubber-wood and kenaf-bast fibers[J]. European Polymer Journal, 2019, 116: 352-360.
doi: 10.1016/j.eurpolymj.2019.04.021
[33] ABRAHAM R E, WONG C S, PURI M. Enrichment of cellulosic waste hemp (cannabis sativa) hurd into non-toxic microfibres[J]. Materials, 2016, 9(7): 562.
doi: 10.3390/ma9070562
[34] 张勇, 鄢勇气. 苎麻化学成分的药用价值及其提取方法[J]. 化学研究, 2021, 5: 536-540.
ZHANG Yong, YAN Yongqi. Medicinal value and extraction methods of chemical constituents from ramie[J]. Chemical Research, 2021, 5: 536-540.
[35] HALIS E U, HICRAN D, FIGEN S. Recycling of cellulose from vegetable fiber waste for sustainable industrial applications[J]. Journal of Industrial Textiles, 2019, 70(1), 37-41.
[36] BAHETI V, MISHRA R, MILITKY J, et al. Influence of noncellulosic contents on nano scale refinement of waste jute fibers for reinforcement in polylactic acid films[J]. Fibers and Polymers, 2014, 15(7): 1500-1506.
doi: 10.1007/s12221-014-1500-5
[37] SPARKES J, HOLLAND C. The rheological properties of native sericin[J]. Acta Biomaterialia, 2018, 69: 234-242.
doi: 10.1016/j.actbio.2018.01.021
[38] CHEN S Y, LIU M Y, HUANG H M, et al. Mechanical properties of bombyx mori silkworm silk fibre and its corresponding silk fibroin filament: a comparative study[J]. Materials & Design, 2019, 181: 108077.
[39] 张昕, 潘志娟. 废旧蚕丝的回收利用现状分析[J]. 丝绸, 2019(6): 25-30.
ZHANG Xin, PAN Zhijuan. Analysis on recycling situation of waste silk[J]. Journal of Silk, 2019(6): 25-30.
[40] ZOU S, WANG X, FAN S, et al. Electrospun regenerated Antheraea pernyi silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors[J]. Journal of Materials Chemistry B, 2021, 9 (27): 5514-5527.
doi: 10.1039/D1TB00944C
[41] 陈小菊, 沈嘉丽, 张佩华. 疝修补片用再生丝素蛋白纳米纤维膜的制备与性能探讨[J]. 国际纺织导报, 2021, 49(11):12-15.
CHEN Xiaoju, SHEN Jiali, ZHANG Peihua. Preparation and properties of regenerated silk fibroin nanofiber membrane for hernia patch[J]. Melliand China, 2021, 49(11):12-15.
[42] QIANG M A, BO Y B, HHL A, et al. Preparation and properties of photochromic regenerated silk fibroin/Tungsten trioxide nanoparticles hybrid fibers[J]. Composites Communications, 2021, 27: 100848.
doi: 10.1016/j.coco.2021.100848
[43] YAMAUCHI K, KHODA A. Novel proteinous microcapsules from wool keratins[J]. Colloids and Surfaces B: Biointerface, 1997, 9: 117-119.
[44] FEROZ S, MUHAMMAD N, RATNAYAKE J, et al. Keratin-based materials for biomedical applications[J]. Bioactive Materials, 2020, 5(3): 496-509.
doi: 10.1016/j.bioactmat.2020.04.007
[45] WANG B, YANG W, MCKITTRICK J, et al. Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration[J]. Progress in Materials Science, 2016, 76: 229-318.
doi: 10.1016/j.pmatsci.2015.06.001
[46] HOLKAR C R, JAIN S S, JADHAV A J, et al. Valorization of keratin based waste[J]. Process Safety and Environmental Protection, 2018, 115: 85-98.
doi: 10.1016/j.psep.2017.08.045
[47] SHAVANDI A, SILVAIL T H, BEKHIT A A, et al. Keratin: dissolution, extraction and biomedical application[J]. Biomaterials Science, 2017, 5( 9): 1699-1735.
doi: 10.1039/C7BM00411G
[48] 胡杰, 宋玉奎, 柴玉叶, 等. 水性聚氨酯丙烯酸酯接枝角蛋白水凝胶的合成及性能[J]. 皮革科学与工程, 2015, 25(3):5.
HU Jie, SONG Yukui, CHAI Yuye, et al. Preparation and properties of aqueous gel via waterworn polyurethane acrylate grafting keratin[J]. Leather Science and Engingeering, 2015, 25(3):5.
[49] 孙丽莹, 高文伟, 李珊, 等. 角蛋白提取方法进展及提取技术应用选择建议[J]. 皮革科学与工程, 2020, 30(3):8.
SUN Liying, GAO Wenwei, LI Shan, et al. Progress in keratin extraction methods and suggestions on selection of extraction techniques for application[J]. Leather Science and Engingeering, 2020, 30(3):8.
[50] ZHU L L, SHEN D K, LUO K H. A critical review on VOCs adsorption by different porous materials: species, mechanisms and modification methods[J]. Journal of Hazardous Materials, 2020, 389: 122102.
doi: 10.1016/j.jhazmat.2020.122102
[51] MENDOZA-CASTILLO D I, REYNEL-AVILA H E, BONILLA-PETRICIOLET A, et al. Synthesis of denim waste-based adsorbents and their application in water defluoridation[J]. Journal of Molecular Liquids, 2016, 221: 469-478.
doi: 10.1016/j.molliq.2016.06.005
[52] 张旭, 柏广宇, 高宝昌, 等. 改性汉麻材料对水体中重金属离子吸附性能研究[J]. 化学工程师, 2021, 3: 39-41.
ZHANG Xu, BAI Guangyu, GAO Baochang, et al. Adsorption of heavy metal ions in water by modified hemp material[J]. Chemical Engineer, 2021, 3: 39-41.
[53] 胡玉洁, 巫拱生, 李青山. 改性罗布麻纤维的吸附功能研究[J]. 功能高分子学报, 2003, 4: 247-250.
HU Yujie, WU Gongsheng, LI Qingshan. Study on adsorption function of modified apocynum fiber[J]. Journal of Functional Polymers, 2003, 4: 247-250.
[54] GORE P M, NAEBE M, WANG X G, et al. Silk fibres exhibiting biodegradability & superhydrophobicity for recovery of petroleum oils from oily wastewater[J]. Journal of Hazardous Materials, 2020, 389: 121823.
doi: 10.1016/j.jhazmat.2019.121823
[55] MORIWAKI H, KITAJIMA S, KURASHIMA M, et al. Utilization of silkworm cocoon waste as a sorbent for the removal of oil from water[J]. Journal of Hazardous Materials, 2009, 165: 266-70.
doi: 10.1016/j.jhazmat.2008.09.116
[56] HYUNG-MIN Choi, MOREAU J P. Oil sorption behavior of various sorbents studied by sorption capacity measurement and environmental scanning electron microscopy[J]. Microscopy Research and Technique, 1993, 25: 447-455.
pmid: 8400439
[57] RADETIC M, RADOJEVIC D, ILIC V, et al. Recycled wool-based nonwoven material for decolorisation of dyehouse effluents[J]. International Journal of Clothing Science and Technology, 2009, 21: 109-116.
doi: 10.1108/09556220910933835
[58] DAKIKY M, KHAMIS M, MANASSRA A, et al. Selective adsorption of chromium (Vi) in industrial wastewater using low-cost abundantly available adsorbents[J]. Advances in Environmental Research, 2002, 6: 533-540.
doi: 10.1016/S1093-0191(01)00079-X
[59] DOU Y, LIU X, YU K, et al. Biomass porous carbon derived from jute fiber as anode materials for lithium-ion batteries[J]. Diamond and Related Materials, 2019, 98: 107514.
doi: 10.1016/j.diamond.2019.107514
[60] REMADEVI R, AL FARUQUE M A, ZHANG J Z, et al. Electrically conductive honeycomb structured graphene composites from natural protein fibre waste[J]. Materials Letters, 2020, 264: 127311.
doi: 10.1016/j.matlet.2020.127311
[61] CATALDI P, CONDURACHE O, SPIRITO D, et al. Keratin-graphene nanocomposite: transformation of waste wool in electronic devices[J]. ACS Sustainable Chemistry & Engineering, 2019(7): 12544-12551.
[62] BHATTI H N, HANIF M A, QASIM M, et al. Biodiesel production from waste tallow[J]. Fuel, 2008, 87: 2961-2966.
doi: 10.1016/j.fuel.2008.04.016
[63] NIGAM P S, SINGH A. Production of liquid biofuels from renewable resources[J]. Progress in Energy and Combustion Science, 2011, 37(1): 52-68.
doi: 10.1016/j.pecs.2010.01.003
[64] SARKAR N, GHOSH S K, BANNERJEE S, et al. Bioethanol production from agricultural wastes: an overview[J]. Renewable Energy, 2012, 37(1): 19-27.
doi: 10.1016/j.renene.2011.06.045
[65] GHOLAMZAD E, KERIMI K, MASOOMI M. Effective conversion of waste polyester-cotton textile to ethanol and recovery of polyester by alkaline pretreatment[J]. Chemical Engineering Journal, 2014, 253: 40-45.
doi: 10.1016/j.cej.2014.04.109
[66] ISMAIL Z Z, TALIB A R. Recycled medical cotton industry waste as a source of biogas recovery[J]. Journal of Cleaner Production, 2016, 112: 4413-4418.
doi: 10.1016/j.jclepro.2015.06.069
[67] KABIR M M, FORGACS G, HORVATH I S. Enhanced methane production from wool textile residues by thermal and enzymatic pretreatment[J]. Process Biochemistry, 2013, 48(4): 575-580.
doi: 10.1016/j.procbio.2013.02.029
[68] KIM D K, KIM K B, KIM Y H, et al. Recycled silk wastes as feed ingredient for poultry[J]. Fiber, 2002, 58, 106-110.
doi: 10.2115/fiber.58.106
[69] GORECKI R S, GORECKI M T. Utilization of waste wool as substrate amendment in pot cultivation of tomato, sweet pepper, and eggplant[J]. Polish Journal of Environmental Studies, 2010, 19(5): 1083-1087.
[70] NUNES L J R, GODINA R, MATIAS J C O, et al. Economic and environmental benefits of using textile waste for the production of thermal energy[J]. Journal of Cleaner Production, 2018, 171: 1353-1360.
doi: 10.1016/j.jclepro.2017.10.154
[71] NASRI-NASRABADI B, WANG X, BYRNE N, et al. Perpetual colour: accessing the colourfastness of regenerated cellulose fibres from coloured cotton waste[J]. Journal of The Textile Institute, 2020, 111(12):1-10.
doi: 10.1080/00405000.2019.1626611
[72] 樊威, 刘红霞, 苗亚萍, 等.基于废旧纺织品的彩色再生纤维素导电长丝的制备方法:202110908027.0[P]. 2021-10-26.
FAN Wei, LIU Hongxia, MIAO Yaping, et al. Preparation method of color regenerated cellulose conductive filament based on wasting textile:202110908027.0[P].2021-10-26.
[1] LI Zhenzhen, ZHI Chao, YU Lingjie, ZHU Hai, DU Mingjuan. Preparation and properties of waste cotton regenerative aerogel/warp-knitted spacer fabric composites [J]. Journal of Textile Research, 2022, 43(01): 167-171.
[2] DONG Shuang, KONG Yuying, GUAN Jinping, CHENG Xianwei, CHEN Guoqiang. Chemical separation and recycling of waste polyester/cotton blended military training uniforms [J]. Journal of Textile Research, 2022, 43(01): 178-185.
[3] YANG Xing, LI Qingzhou, WU Min, ZHOU Yongkai. Circular economy in European Union textile industry chain and key issues of waste textiles treatment [J]. Journal of Textile Research, 2022, 43(01): 106-112.
[4] HAN Fei, LANG Chenhong, QIU Yiping. Research progress in resource recycling based on waste textiles [J]. Journal of Textile Research, 2022, 43(01): 96-105.
[5] GAO Qiang, WANG Xiao, GUO Yajie, CHEN Ru, WEI Ju. Preparation and performance of cotton based Ti3C2Tx oil-water separation membrane [J]. Journal of Textile Research, 2022, 43(01): 172-177.
[6] WANG Shaopeng, WU Baozhai, HE Zhou. Technology progress in recycling and reuse of waste textiles [J]. Journal of Textile Research, 2021, 42(08): 34-40.
[7] TU Li, MENG Jiaguang, LI Xin, LI Juanzi. Composition analysis and stripping process of waste wool/silk/cotton blended fabric [J]. Journal of Textile Research, 2019, 40(11): 75-80.
[8] . Preparation and properties of waste textile regenerated felt materials [J]. Journal of Textile Research, 2018, 39(11): 56-60.
[9] . Model establishment and validation of waste polyester fiber products based on near infrared quantitative analysis [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 63-68.
[10] . Performance of paper made from waste textile fibers and wood pulp [J]. Journal of Textile Research, 2015, 36(03): 20-23.
[11] . Oil adsorption property of modified waste polypropylene fibers [J]. Journal of Textile Research, 2015, 36(03): 6-10.
[12] . Research progress of recycled use of waste textiles [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 153-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!