Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 121-126.doi: 10.13475/j.fzxb.20210310207

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Research on treatment of hemp/jute interlaced fabric with sodium pyrophosphate and compound enzyme

ZHANG Yi1(), GAO Jinxia2, YU Chongwen3   

  1. 1. Zhejiang Industry Polytechnic College, Shaoxing, Zhejiang 312000, China
    2. Shaoxing Touzhen Textile Co., Ltd., Shaoxing, Zhejiang 312000, China
    3. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2021-03-31 Revised:2022-03-25 Online:2022-06-15 Published:2022-07-15

Abstract:

The hemp/jute interlaced fabric is stiff in handle and polluted in alkali boiling chlorine bleaching. It is proposed to combined process with the sodium pyrophosphate and composite enzyme (laccase/acidic xylanase), taking the fabric weight loss ratio, fabric tensile strength(warp direction), bending length and wicking height as evaluation index, the single factor experiments and orthogonal test.Under the above optimal scheme,carried out the infrared spectrum test and performance comparison of the fabrics treated.The optimal process scheme was obtained as follows: the mass concentration of sodium pyrophosphate was 9 g/L, the treatment time was 90 min, the treatment temperature was 80 ℃, the mass concentration of laccase was 7.5 g/L, the mass concentration of acid xylanase was 6.0 g/L, the treatment time was 90 min, and the pH value was 5.0. The results showed that under the optimum solution, the fabric weight loss ratio was 18.26%, fabric tensile strength(warp direction) was 780 N,bending length reduced 24.82%, capillary effect increased 46.4%; the process can achieve the effect of alkali boiling chlorine bleaching (or alkali oxygen one bath), ecological and environmental protection,which has the potential of market development.

Key words: hemp, sodium pyrophosphate, jute, laccase, stiffness, weight loss ratio

CLC Number: 

  • TS102

Tab.1

Effect of mass concentration of sodium pyrophosphate on fabric properties"

焦磷酸钠质量
浓度/(g·L-1)
织物质量减
少率/%
织物断裂强
力(经向)/N
弯曲长
度/cm
芯吸高
度/mm
7 8.35 930 4.14 87.8
8 10.29 870 3.88 95.7
9 11.57 790 3.58 106.9
10 11.63 700 3.55 108.2
11 11.69 610 3.54 108.8

Tab.2

Effect of the treat times of sodium pyrophosphate on fabric properties"

处理时
间/min
织物质量
减少率/%
织物断裂强
力(经向)/N
弯曲长
度/cm
芯吸高
度/mm
45 7.29 950 4.18 85.5
60 8.55 900 4.01 91.4
75 9.38 830 3.94 97.6
90 11.55 780 3.60 107.1
105 11.21 770 3.66 106.5

Tab.3

Effect of the treat temperatures of sodium pyrophosphate on fabric properties"

处理温
度/℃
织物质量减
少率/%
织物断裂强
力(经向)/N
弯曲长
度/cm
芯吸高
度/mm
50 9.21 890 3.86 90.5
60 10.27 850 3.79 97.8
70 10.82 800 3.66 103.5
80 11.57 770 3.58 106.9
90 8.18 970 4.20 88.7

Tab.4

Factors and levels of orthogonal test with complex enzyme treatment"

水平 A
漆酶质量浓
度/(g·L-1)
B
酸性木聚糖酶
质量浓度/(g·L-1)
C
处理时
间/min
D
处理液
pH值
1 6.5 5.0 60 4.5
2 7.5 6.0 75 5.0
3 8.5 7.0 90 5.5

Tab.5

Orthogonal design and results analysis with complex enzyme treatment"

试验号 A B C D 质量
减少
率/
%
断裂
强力
(经
向)/
N
弯曲
长度/
cm
芯吸
高度/
mm
1 1 1 1 1 6.83 730 3.53 105.8
2 1 2 2 2 7.78 710 3.46 109.3
3 1 3 3 3 9.02 670 3.33 112.1
4 2 1 2 3 8.37 640 3.30 112.9
5 2 2 3 1 10.14 610 3.16 117.6
6 2 3 1 2 11.36 580 3.10 115.6
7 3 1 3 2 12.25 570 3.03 121.0
8 3 2 1 3 13.54 530 3.01 123.8
9 3 3 2 1 14.38 500 3.06 128.7
质量
减少
K ¯ 1 7.87 9.15 10.57 10.45
K ¯ 2 9.95 10.48 10.17 10.46
K ¯ 3 13.39 11.58 10.47 10.31
R 5.52 2.43 0.40 0.15
断裂
强力
(经向)
K ¯ 1 703 647 613 613
K ¯ 2 610 617 617 620
K ¯ 3 533 583 617 613
R 170 63 3 7
弯曲
长度
K ¯ 1 3.44 3.29 3.21 3.25
K ¯ 2 3.19 3.21 3.27 3.20
K ¯ 3 3.03 3.17 3.16 3.21
R 0.41 0.12 0.11 0.05
芯吸
高度
K ¯ 1 109.0 113.2 115.0 117.3
K ¯ 2 115.3 116.9 116.9 115.3
K ¯ 3 124.5 118.8 116.8 116.2
R 15.5 5.7 1.9 2.0

Tab.6

Analysis of variance"

方差来源 偏差平方和 自由度 F F临界值 显著性
A 16.51 2 412.7 F0.90(2,2)
=9.00
显著
B 8.93 2 223.2 显著
C 0.26 2 6.50 不显著
D(误差) 0.04 2
A 444.53 2 32.7 F0.90(2,2)
=9.00
显著
B 139.26 2 10.3 显著
C(误差) 13.56 2
D 62.88 2 4.7 不显著
A 0.228 2 45.6 F0.90(2,2)
=9.00
显著
B 0.022 2 4.40 不显著
C 0.015 2 3.0 不显著
D(误差) 0.005 2
A 261.2 2 42.8 F0.90(2,2)
=9.00
显著
B 48.1 2 7.9 不显著
C 7.5 2 1.2 不显著
D(误差) 6.1 2

Tab.7

Component content of hemp yarn and jute yarn before or after treatment%"

纱线
类别
脂蜡
水溶
果胶 半纤
维素
木质
纤维
未处理大麻 1.58 7.37 3.95 16.58 11.19 59.33
处理后大麻 0.36 0.22 1.07 4.35 4.49 89.51
未处理黄麻 0.89 3.32 0.75 19.42 18.04 57.58
处理后黄麻 0.45 0.51 0.12 6.29 10.37 82.26

Fig.1

Infrared spectrum of two yarns before or after treatment.(a)Hemp yarn; (b)Jute yarn"

Fig.2

SEM images on surface of two yarns before and after treatment(×1 000).(a)Hemp yarns before treatment;(b)Hemp yarns after treatment;(c)Jute yarns before treatment;(d)Jute yarns after treatment"

Tab.8

Comparison of properties between treated and untreated on the hemp/jute interlaced fabric"

处理类型 织物质量
减少率%
织物断裂强
力(经向)/N
弯曲长
度/cm
芯吸高
度/mm
未处理 0 940 4.23 80.5
焦磷酸钠处理 11.57 880 3.58 106.8
焦磷酸钠和复
合酶联合处理
18.26 780 3.18 117.6

Tab.9

Dosage of chemical auxiliaries for different process"

工艺类别 化学助剂及质量浓度
碱煮氯漂 NaOH 4.5 g/L,NaClO 2.5 g/L,JFC 1.0 g/L,浴比1∶10
碱氧一浴 NaOH 6.8 g/L,H2O2 4.5 g/L,JFC 1.0 g/L,浴比1∶10
复合酶制剂 漆酶18 g/L,酸性木聚糖酶15.5 g/L,浴比1∶10
生化联合 NaOH 3.9 g/L,漆酶9 g/L,酸性木聚糖酶7 g/L,浴比1∶10
[1] 周步光, 王平, 王强, 等. 辣根过氧化物酶在纤维材料生物整理中的应用研究进展[J]. 纺织学报, 2019, 40(4):170-176.
ZHOU Buguang, WANG Ping, WANG Qiang, et al. Research progress of horseradish peroxidase in bio-finishing of fiber materials[J]. Journal of Textile Research, 2019, 40(4):170-176.
[2] SUBHAM Agarwal, SANTONAB Chakraborty, SHANKAR Chakraborty. ADEMATEL-MABAC-based approach for grading and evaluation of jute fibers[J]. Research Journal of Textile and Apparel, 2020, 24(4):554-555.
[3] 窦艳丽, 李雪菲, 张天琪, 等. β-环糊精-聚磷酸铵对黄麻/聚丙烯复合材料阻燃性能的影响[J]. 复合材料学报, 2019, 36(11):2568-2569.
DOU Yanli, LI Xuefei, ZHANG Tianqi, et al. Effect of β-cyclodextrin and ammonium poly-phosphate on flame retardancy of jute/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2019, 36(11):2568-2569.
[4] 胡晓兰, 兰茜, 代少伟, 等. 黄麻纤维/聚酯纤维复合材料的阻燃改性[J]. 复合材料学报, 2017, 34(4):694-695.
HU Xiaolan, LAN Xi, DAI Shaowei, et al. Flame retarded modification on jute fiber/polyester fiber composites[J]. Acta Materiae Compositae Sinica, 2017, 34(4): 694-695.
[5] PRATHIBA Devi R, RATHINAMOORTHY R, JEYAKODI Moses. Analysis on moisture management characteristics of enzyme and amino silicone treated jute/cotton union fabric[J]. Fibers and Polymers, 2020, 21(10): 2253-2262.
doi: 10.1007/s12221-020-1072-5
[6] 张莹琨, 郑振荣, 张富勇, 等. 汉麻麻皮脱胶工艺与果胶提取[J]. 上海纺织科技, 2019, 47(12):39-42.
ZHANG Yingkun, ZHENG Zhenrong, ZHANG Fuyong, et al. Green degumming process and pectin extraction of hemp[J]. Shanghai Textile Science & Technology, 2019, 47(12):39-42.
[7] 郑振荣, 智伟, 邢江元, 等. 大麻纤维草酸铵-酶联合脱胶工艺[J]. 纺织学报, 2019, 40(11):88-93.
ZHENG Zhenrong, ZHI Wei, XING Jiangyuan, et al. Ammonium oxalate-enzyme combining degumming process of hemp fiber[J]. Journal of Textile Research, 2019, 40(11):88-93.
doi: 10.1177/004051757004000113
[8] 李成红, 陈英, 高艺. 汉麻纤维的微生物-化学联合脱胶[J]. 印染, 2020, 46(10):13-16.
LI Chenghong, CHEN Ying, GAO Yi. Degumming of hemp fiber with combination of microbes and chemi-cals[J]. China Dying & Fishing, 2020, 46(10):13-16.
[9] 王维明, 蒋杭平. 黄麻纤维低温轧堆法精细化工艺初探[J]. 绍兴文理学院学报, 2015, 35(9):10-12.
WANG Weiming, JIANG Hangping. On the refining process of jute fiber with low temperature pad-bath method[J]. Journal of Shaoxing University, 2015, 35(9):10-12.
[10] 许艳萍, 吕品, 张庆滢, 等. 不同工业大麻品种对田间5种重金属吸收积累特性的比较[J]. 农业资源与环境学报, 2020, 37(1):106-114.
XU Yanping, LÜ Pin, ZHANG Qingying, et al. Comparison of the absorption and accumulation characteristics of five heavy metals among different industrial hemp varieties[J]. Journal of Agricultural Resources and Environment, 2020, 37(1):106-114.
[11] 张雷, 徐硕. 焦磷酸钠/二价铁络合物催化臭氧降解化纤污水[J]. 精细石油化工, 2020, 37(2):15.
ZHANG Lei, XU Shuo. Ozonation degradation of fiber waste-water catalyzed by Fe2+ Pyrophosphate sodium complex[J]. Speciality Petrochemicals, 2020, 37(2): 15.
[12] 朱显锋, 丁涛. 常见金属离子对漆酶酶活的影响[J]. 化学研究, 2003(3):51-54.
ZHU Xianfeng, DING Tao. Effect of metal ions on activity of two laccases[J]. Chemical Researches, 2003(3):51-54.
[13] 马艳柳, 王云仪. 织物刺痒感的形成与作用机制的研究进展[J]. 毛纺科技, 2020, 48(12):78-81.
MA Yanliu, WANG Yunyi. Research progress on the formation and mechanism of fabric prickle[J]. Wool Textile Journal, 2020, 48(12):78-81.
[14] 程浩南, 蒋丽萍, 张鹏飞. 低温柔化处理后苎麻面料刺痒感的研究[J]. 毛纺科技, 2017, 45(6):45-51.
CHENG Haonan, JIANG Liping, ZHANG Pengfei. Research on the prickle sensation of ramie fabric based on low temperature softening[J]. Wool Textile Journal, 2017, 45(6):45-51.
[1] LIU Suo, WANG Yaqian, WEI Anfang, ZHAO Lei, FENG Quan. Preparation of functional spunlaced viscose fiber membrane and its application for laccase immobilization [J]. Journal of Textile Research, 2022, 43(05): 124-129.
[2] MO Shuai, LIU Zhipeng, LUO Bingrui, CEN Guojian, XU Jiake, GAO Hanjun. Research on modification of planetary gear transmission system used in textile machineries [J]. Journal of Textile Research, 2022, 43(05): 170-177.
[3] CUI Qilu, LI Jiawei, PAN Liugui, YANG Fei, YU Chongwen. Optimization and characterization of flavonoids extracted from jute fiber [J]. Journal of Textile Research, 2021, 42(08): 90-95.
[4] LI Xintong, GAO Zhe, GU Hongyang, CONG Honglian. Study on stiffness style of knitted suit fabrics [J]. Journal of Textile Research, 2020, 41(11): 53-58.
[5] WANG Zexing, WU Bo, LI Shuai, HE Bin. Energy dissipation evolution of jute fabric/polyethylene composite under cyclic stress relaxation [J]. Journal of Textile Research, 2020, 41(10): 74-80.
[6] MO Shuai, FENG Zhanyong, DANG Heyu, ZOU Zhenxing, WANG Diwen, ZHU Hongwei. Vibration damping mechanism and vibration characteristics of spindle tubes [J]. Journal of Textile Research, 2020, 41(03): 148-153.
[7] ZHANG Zhengye, XIN Binjie, DENG Na, CHEN Yang, XING Wenyu. Research and application of algorithm for measuring hemp fiber cross-sectional parameters based on boundary tracking [J]. Journal of Textile Research, 2020, 41(02): 39-43.
[8] ZHENG Zhenrong, ZHI Wei, XING Jiangyuan, DU Huanfu, XU Zijian. Ammonium oxalate-enzyme combining degumming process of hemp fiber [J]. Journal of Textile Research, 2019, 40(11): 88-93.
[9] ZHANG Fangfang, DUAN Yongchuan. Preloaded unit cell model and elastic prediction of 2-D triaxial braided composites [J]. Journal of Textile Research, 2019, 40(10): 85-91.
[10] ZHOU Buguang, WANG Ping, WANG Qiang, FAN Xuerong, YUAN Jiugang. Research progress of horseradish peroxidase in bio-finishing of fiber materials [J]. Journal of Textile Research, 2019, 40(04): 170-176.
[11] . Properties of flax and hemp blended yarn based on swirl nozzle spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 19-24.
[12] . Application of plasma oxidation in hemp fiber degumming [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 75-79.
[13] . Sound absorption properties of nonwoven material based on wool and its hybrid fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 67-71.
[14] . Low-loss optimization of cotton/ hemp blending process [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 35-39.
[15] . Calculation on bending stiffness of woven fabrics by image processing method [J]. Journal of Textile Research, 2016, 37(3): 41-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!