Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 133-139.doi: 10.13475/j.fzxb.20210602607

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

An improved AlexNet model for fleece fabric quality inspection

JIN Shoufeng1,2(), HOU Yize1,2, JIAO Hang1,2, ZHNAG Peng1,2, LI Yutao1,2   

  1. 1. College of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710600, China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an Polytechnic University, Xi'an, Shaanxi 710600, China
  • Received:2021-06-08 Revised:2022-03-04 Online:2022-06-15 Published:2022-07-15

Abstract:

The traditional image recognition method is difficult to extract the surface features of the fleece fabrics leading to low recognition accuracy. This study proposed an improved AlexNet model for the quality detection method of the fleece fabrics. The convolutional neural network was used to extract the sample features of the fleece fabric, and the experimental method combining SGDM, RMSProp, Adam optimization algorithm was adopted for the study to investigate effects of changing learning rate and the use of two new learning and transfer learning algorithms in training the fleece fabric image dataset. After the completion of training, different depth pooling layers of the convolutional neural network were employed to extract the features of the fleece fabric samples. The extracted fleece fabric features were fitted to the support vector machine(SVM) classifier to analyze the input fleece fabric image. The experimental results show that the use of the convolutional neural network method can increase the ability of the convolutional layer to extract the surface features of the fleece fabric, and obtain image features with higher resolution. The model trained by the data enhancement and SGDM algorithm can extract the network pool5 layer features. With the SVM classifier, the recognition accuracy enhanced significantly. The quality detection method of fleece fabrics based on the improved AlexNet model can extract the surface features of fleece fabrics with high recognition rate.

Key words: fleece fabric, machine vision, convolutional neural network, transfer learning, data enhancement, fabric quality inspection

CLC Number: 

  • TN911.73

Fig.1

Example of scratching image. (a) Wool catching fabric A;(b) Wool catching fabric B;(c) Wool catching fabric C;(d) Wool catching fabric D;(e) Wool catching fabric E;(f) Wool catching fabric F"

Fig.2

Data expansion. (a) Original drawing;(b) Image scaling;(c) Noise image"

Tab. AlexN

et network parameter table"

名称 说明 参数总数
Data(图像输入) 227×227×3图像 -
Conv1(卷积) 核数:96 11×11×3卷积
步幅[4 4]填充[0 0 0 0]
34 944
Conv2(卷积) 核数:2组1 285×5×48卷积
步幅[1 1]填充[2 2 2 2]
307 456
Conv3(卷积) 核数:3 843×3×256卷积
步幅[1 1]填充[1 1 1 1]
88 5120
Conv4(卷积) 核数:2组1 923×3×192卷积
步幅[1 1]填充[1 1 1 1]
663 936
Conv5(卷积) 核数:2组1 283×3×192卷积
步幅[1 1]填充[1 1 1 1]
442 624
FCL6(全连接) 4 098全连接层 3 775 2832
FCL7(全连接) 4 098全连接层 1 6781 312
FCL8(全连接) 1 000全连接层 4 097 000
Output(分类输出) - -

Fig.3

Schematic diagram of improved model"

Fig.4

Flow chart of wool catching fabric recognition method"

Fig.5

Fleece fabric image outputs feature image in the CL2 layer of the AlexNet network.(a)Compact uniformity of original image;(b)Compact uniformity of feature image;(c)Sparse and uneven of original image;(d)Sparse and uneven of feature image"

Fig.6

Visualization of convolution layer features"

Tab.1

Recognition results by different models"

训练
方式
训练优
化算法
学习率 过拟
合率
训练平均
耗时/min
测试集准确率/%
抓毛织物A 抓毛织物B 抓毛织物C 抓毛织物D 抓毛织物E 抓毛织物F
全新
学习
SGDM 0.000 1
0.001
1.013
1.019
31
27
88.35
75.21
82.11
70.25
89.35
76.31
88.52
75.35
88.37
77.97
86.24
79.24
RMSProp 0.000 1
0.001
1.028
1.032
36
33
83.58
79.35
83.64
75.24
88.57
82.15
82.35
70.37
86.17
75.64
87.68
80.79
Adam 0.000 1
0.001
1.123
1.106
37
35
85.25
73.03
76.35
77.27
84.38
80.65
81.25
80.02
83.68
80.42
84.13
82.47
迁移
学习
SGDM 0.000 1
0.001
1.010
1.015
21
18
99.85
98.75
98.28
98.35
99.34
97.35
99.98
98.27
99.98
99.87
99.43
98.94
RMSProp 0.000 1
0.001
1.016
1.020
27
23
95.36
94.49
92.41
91.68
91.27
94.35
91.26
88.34
93.06
92.01
92.15
91.56
Adam 0.000 1
0.001
1.113
1.119
28
26
92.35
90.35
90.35
91.25
91.25
74.21
89.08
92.25
91.02
87.82
94.25
89.54

Fig.7

Comparison of classification success rates using different layer features"

Fig.8

Impact of data enhancement on model"

Tab.2

Comparison and recognition results of learning styles"

学习方式 数据
增强
学习率 pool5层的输出拟合SVM分类器抓毛织物表面测试准确率/% 平均识别
率/%
抓毛织物A 抓毛织物B 抓毛织物C 抓毛织物D 抓毛织物E 抓毛织物F
全新学习 0.000 1 98.12 99.02 98.96 98.14 97.08 98.89 98.37
迁移学习 0.000 1 99.37 99.08 99.13 99.09 99.75 99.54 99.33

Fig.9

Influence of different learning methods on model"

[1] 金守峰, 陈阳, 林强强, 等. 起绒织物表面轮廓提取及覆盖程度估计方法[J]. 棉纺织技术, 2019, 47(9): 13-17.
JIN Shoufeng, CHEN Yang, LIN Qiangqiang, et al. Fluff fabric[J]. Cotton Textile Technology, 2019, 47(9): 13-17.
[2] KIM S M, PPAR C K. Evaluation of fabric pilling using hybrid imaging methods[J]. Fibers and Polymers, 2006, 7(1): 71-89.
[3] 李春雷, 高广帅, 刘洲峰, 等. 应用方向梯度直方图和低秩分解的织物疵点检测算法[J]. 纺织学报, 2017, 38(3): 149-154.
LI Chunlei, GAO Guangshuai, LIU Zhoufeng, et al. Fabric defect detection algorithm based on histogram of oriented gradient and low-rank decomposition[J]. Journal of Textile Research, 2017, 38(3): 149-154.
doi: 10.1177/004051756803800207
[4] 何峰, 周亚同, 赵翔宇, 等. 纹理织物疵点窗口跳步形态学法检测[J]. 纺织学报, 2017, 38(10): 124-131.
HE Feng, ZHOU Yatong, ZHAO Xiangyu, et al. Textured fabric defect detection based on windowed hop-step morphological algorithm[J]. Journal of Textile Research, 2017, 38(10): 124-131.
[5] 汪亚明, 崔新辉, 韩永华. 基于小波变换及Gabor滤波的起毛起球图像分割[J]. 丝绸, 2016, 53(3): 37-40.
WANG Yaming, CUI Xinhui, HAN Yonghua. Fabric pilling image segmentation based on wavelet transform and Gabor filter[J]. Journal of Silk, 2016, 53(5): 37-40.
[6] 夏雨薇, 石美红, 贺飞跃, 等. 基于降维融合特征和集成学习的织物疵点分类[J]. 国外电子测量技术, 2019, 38(7):86-91.
XIA Yuwei, SHI Meihong, HE Feiyue, et al. Fabric defect classification based on dimensionality reduction fusion features and ensemble learning[J]. Foreign Electronic Measurement Technology, 2019, 38(7): 86-91.
[7] 张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019, 42(3): 453-482.
ZHANG Shun, GONG Yihong, WANG Jinjun. The development of deep convolution neural network and its applications on computer vision[J]. Chinese Journal of Computers, 2019, 42(3): 453-482.
[8] 王理顺, 钟勇, 李振东, 等. 基于深度学习的织物缺陷在线检测算法[J]. 计算机应用, 2019, 39(7): 2125-2128.
WANG Lishun, ZHONG Yong, LI Zhendong, et al. On-line fabric defect recognition algorithm based on deep learning[J]. Computer Application, 2019, 39(7): 2125-2128.
[9] 张家玮. 基于机器视觉技术的织物缺陷检测方法研究[D]. 无锡: 江南大学, 2021:1-39.
ZHANG Jiawei. Research on fabric defect detection method based on machine vision technology[D]. Wuxi: Jiangnan University, 2021:1-39.
[10] 金守峰, 林强强, 马秋瑞, 等. 基于BP神经网络的织物表面绒毛质量的检测方法[J]. 纺织学报, 2020, 41(2): 69-76.
JIN Shoufeng, LIN Qiangqiang, MA Qiurui, et al. Method for detecting fluff quality of fabric surface based on BP neural network[J]. Journal of Textile Research, 2020, 41(2): 69-76.
[11] KRIZHEVSKY Alex, SUTSKEVER Ilya, HINTON Geoffrey E. ImageNet classification with deep convolutional neural networks[J]. Communications of The ACM, 2017, 60(6): 65-78.
doi: 10.1145/3122803
[12] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 72-85.
doi: 10.1126/science.1126287
[13] 卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31(1): 1-17.
ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251.
[14] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.
ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251.
[15] 陈思文, 刘玉江, 刘冬, 等. 基于AlexNet模型和自适应对比度增强的乳腺结节超声图像分类[J]. 计算机科学, 2019, 46(S1): 146-152.
CHEN Siwen, LIU Yujiang, LIU Dong, et al. AlexNet model and adaptive contrast enhancement based ultrasound imaging classification[J]. Computer Science, 2019, 46(S1): 146-152.
[16] 常亮, 邓小明, 周明全, 等. 图像理解中的卷积神经网络[J]. 自动化学报, 2016, 42(9): 1300-1312.
CHANG Liang, DENG Xiaoming, ZHOU Mingquan, et al. Convolutional neural networks in image understanding[J]. Acta Automatica Sinica, 2016, 42(9): 1300-1312.
[17] 唐浩漾, 孙梓巍, 王婧, 等. 基于VGG-19混合迁移学习模型的服饰图片识别[J]. 西安邮电大学学报, 2018, 23(6): 87-93.
TANG Haoyang, SUN Ziwei, WANG Jing, et al. Clothing image recognition based on VGG-19 hybrid migration learning model[J]. Journal of Xi'an University of Posts and Telecommunications, 2018, 23(6): 87-93.
[18] 陈卫中, 倪宗瓒, 潘晓平, 等. 用ROC曲线确定最佳临界点和可疑值范围[J]. 现代预防医学, 2005(7): 729-731.
CHEN Weizhong, NI Zongzan, PAN Xiaoping, et al. Receiver operating characteristic curver to determine the optimal operating point and doubtable value interval[J]. Modern Preventive Medicine, 2005(7): 729-731.
[1] ZHOU Qihong, PENG Yi, CEN Junhao, ZHOU Shenhua, LI Shujia. Yarn breakage location for yarn joining robot based on machine vision [J]. Journal of Textile Research, 2022, 43(05): 163-169.
[2] JIANG Hui, MA Biao. Style similarity algorithm based on clothing style [J]. Journal of Textile Research, 2021, 42(11): 129-136.
[3] LÜ Wentao, LIN Qiqi, ZHONG Jiaying, WANG Chengqun, XU Weiqiang. Research progress of image processing technology for fabric defect detection [J]. Journal of Textile Research, 2021, 42(11): 197-206.
[4] WU Liubo, LI Xinrong, DU Jinli. Research progress of motion trajectory planning of sewing robot based on contour extraction [J]. Journal of Textile Research, 2021, 42(04): 191-200.
[5] TIAN Yuhang, WANG Shaozong, ZHANG Wenchang, ZHANG Qian. Rapid detection method of single-component dye liquor concentration based on machine vision [J]. Journal of Textile Research, 2021, 42(03): 115-121.
[6] FENG Wenqian, LI Xinrong, YANG Shuai. Research progress in machine vision algorithm for human contour detection [J]. Journal of Textile Research, 2021, 42(03): 190-196.
[7] MENG Shuo, XIA Xuwen, PAN Ruru, ZHOU Jian, WANG Lei, GAO Weidong. Detection of fabric density uniformity based on convolutional neural network [J]. Journal of Textile Research, 2021, 42(02): 101-106.
[8] WANG Yiwen, LUO Ronglei, KANG Yuzhe. Automatic measurement of key dimensions for Han-style costumes based on use of convolutional neural network [J]. Journal of Textile Research, 2020, 41(12): 124-129.
[9] ZHU Shigen, YANG Hongxian, BAI Yunfeng, DING Hao, ZHU Qiaolian. Investigation on automatic deformation inspection system of long and thin parts with hooks [J]. Journal of Textile Research, 2020, 41(10): 158-163.
[10] SHAO Jinxin, ZHANG Baochang, CAO Jipeng. Fiber detection and recognition technology in cotton fiber carding process based on image processing and deep learning [J]. Journal of Textile Research, 2020, 41(07): 40-46.
[11] ZHANG Jianxin, LI Qi. Online cheese package yarn density detection system based on machine vision [J]. Journal of Textile Research, 2020, 41(06): 141-146.
[12] XIA Haibang, HUANG Hongyun, DING Zuohua. Clothing comfort evaluation based on transfer learning and support vector machine [J]. Journal of Textile Research, 2020, 41(06): 125-131.
[13] WANG Zexia, CHEN Ge, CHEN Zhenzhong. Surface defect recognition of chemical fiber yarn packages based on improved convolutional neural network [J]. Journal of Textile Research, 2020, 41(04): 39-44.
[14] LU Hao, CHEN Yuan. Surface defect detection method of carbon fiber prepreg based on machine vision [J]. Journal of Textile Research, 2020, 41(04): 51-57.
[15] WANG Xiaohua, YAO Weiming, WANG Wenjie, ZHANG Lei, LI Pengfei. Sewing gesture recognition based on improved YOLO deep convolutional neural network [J]. Journal of Textile Research, 2020, 41(04): 142-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!