Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 86-93.doi: 10.13475/j.fzxb.20210203908

• Textile Engineering • Previous Articles     Next Articles

Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process

SUN Huanwei1, ZHANG Heng1,2(), CUI Jingqiang2,3, ZHU Feichao4, WANG Guofeng2,3, SU Tianyang2,3, ZHEN Qi1   

  1. 1. Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. Henan Key Laboratory of Medical Polymer Materials Technology and Application, Xinxiang, Henan 453400, China
    3. Henan Tuoren Medical Device Co., Ltd., Xinxiang, Henan 453400, China
    4. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-02-15 Revised:2022-03-13 Online:2022-06-15 Published:2022-07-15
  • Contact: ZHANG Heng E-mail:zhangheng2699@zut.edu.cn

Abstract:

In order to improve the mechanical properties of polylactic acid (PLA) melt blown nonwovens, samples of PLA melt blown nonwovens with high crystallinity were prepared by a large scale and one step post-drafting assisted melt blown process, based on the experimental analysis of the thermodynamic properties of PLA polymers. The morphology, tensile and bursting properties of the prepared samples were evaluated. The results show that the glass transition temperature and melting point of PLA were 60.69 ℃ and 162.6 ℃, respectively, suitable for the preparation at a high drafting ratio during the post-drafting assisted melt blown process. It was noted that with the drafting ratio increasing from 1.0 to 3.0, the proportion of high-oriented fibers (fiber orientation angle≤20°) was increased from 28% to 100%, and the proportion of the microfibers (fiber diameter ≤3 μm) was increased from 23% to 67%. The drafting ratio increase also caused the crystallinity to increase from 1.22% to 37.43%, the tensile breaking strength in machine direction to reach 4.33 N/mm2, and the bursting force to 36.8 N, demonstrating improvement of the mechanical properties of the PLA melt blown nonwovens due to the post-drafting assisted melt blown process.

Key words: nonwoven, polylactic acid, micro-nano fiber, post-drafting assisted melt blown process, mechanical property

CLC Number: 

  • TS176

Fig.1

Schematic diagram of preparation of PLA melt blown nonwovens by post-drafting assisted melt blown process"

Fig.2

DSC curves of PP, PE and PLA polymers.(a) Secondary heating curve; (b) Cooling curve"

Fig.3

Surface and cross-sectional SEM images of PLA melt blown nonwovens with different drafting ratios.(a)R=1.0;(b)R=1.8;(c)R=2.1;(d)R=2.4;(e)R=2.7;(f)R=3.0; (g)Untrimmed"

Fig.4

Schematic diagram of fiber orientation."

Fig.5

Fiber diameter distribution curves of PLA melt blown nonwovens"

Fig.6

Fiber orientation angle distribution curves of PLA melt blown nonwovens"

Fig.7

XRD curves(a) and crystallinity (b) of PLA melt blown nonwovens"

Fig.8

Tensile breaking strength-displacement curves of PLA melt blown nonwovens. (a) Machine direction;(b) Crosswise direction"

Tab.1

Tensile properties of samples of PLA melt blown nonwovens"

牵伸
倍率
R
面密度/
(g·m-2)
纵向断
裂强度/
(N·mm-2)
纵向断
裂伸长
率/%
横向断
裂强度/
(N·mm-2)
横向断
裂伸长
率/%
纵横向
强度比
1.0 119.90 1.92 6.14 1.75 8.10 1.10
1.8 113.00 3.47 3.58 0.51 43.62 6.80
2.1 107.80 3.86 3.30 0.36 43.80 10.72
2.4 92.40 4.01 3.19 0.34 44.93 11.79
2.7 84.60 4.20 3.06 0.32 57.53 13.13
3.0 80.10 4.33 2.63 0.31 75.43 13.97

Fig.9

Bursting curves of PLA melt blown nonwovens with different drafting ratios"

[1] DZIERZKOWSKA E, SCISŁOWSKA-CZARNECKA A, KUDZIN M, et al. Effects of process parameters on structure and properties of melt-blown poly(lactic acid) nonwovens for skin regeneration[J]. Journal of Functional Biomaterials, 2021, 12(1): 16.
doi: 10.3390/jfb12010016
[2] 朱斐超, 张宇静, 张强, 等. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(1):49-57.
ZHU Feichao, ZHANG Yujing, ZHANG Qiang, et al. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens[J]. Journal of Textile Research, 2022, 43(1):49-57.
[3] ZHANG Jianfeng, CHEN Gangjin, BHAT G S, et al. Electret characteristics of melt-blown polylactic acid fabrics for air filtration application[J]. Journal of Applied Polymer Science, 2020, 137(4): 48309.
doi: 10.1002/app.48309
[4] VADAS D, KMETYKÓ D, MAROSI G, et al. Application of melt-blown poly (lactic acid) fibres in self-reinforced composites[J]. Polymers, 2018, 10(7): 766.
doi: 10.3390/polym10070766
[5] 徐燕. 口罩用聚乳酸熔喷布的专利申请现状研究[J]. 化工管理, 2020(25): 89-92.
XU Yan. Study on patent application status of polylactic acid melt-blown nonwovens for masks[J]. Chemical Enterprise Management, 2020(25): 89-92.
[6] XU Yuanqiang, ZHANG Xiaomin, HAO Xibo, et al. Micro/nanofibrous nonwovens with high filtration performance and radiative heat dissipation property for personal protective face mask[J]. Chemical Engineering Journal, 2021, 423: 130175.
doi: 10.1016/j.cej.2021.130175
[7] ZHU Feichao, YU Bin, SU Juanjuan, et al. Study on PLA/PA11 bio-based toughening melt-blown nonwov-ens[J]. Autex Research Journal, 2020, 20(1): 24-31.
doi: 10.2478/aut-2019-0002
[8] 张矿生, 唐梅荣, 薛小佳, 等. 聚乳酸/聚乙二醇共混物的结晶与降解行为[J]. 化工学报, 2021, 72(2): 1181-1190.
ZHANG Kuangsheng, TANG Meirong, XUE Xiaojia, et al. Crystallization and degradation behavior of poly(lactic acid)/poly(ethylene glycol) blends[J]. CIESC Journal, 2021, 72(2): 1181-1190.
[9] WANG Ping, CUI Zhaopei, HU Xianhai, et al. Effect of ionic liquid segments of copolymer on compatibilization process and dielectric behavior of polylactide/polyvinylidene fluoride blends[J]. Journal of Applied Polymer Science, 2021, 138(3): 49702.
doi: 10.1002/app.49702
[10] 王巧姣. 结晶性尼龙11粒子与弹性体协同增韧聚乳酸及其机理研究[D]. 合肥: 中国科学技术大学, 2020: 6-10.
WANG Qiaojiao. Study on toughening of polylactide-based blends through crystalline nylon 11 particles and elastomer[D]. Hefei: University of Science and Technology of China, 2020:6-10.
[11] JIANG Jiandi, SU Lili, ZHANG Kun, et al. Rubber-toughened PLA blends with low thermal expansion[J]. Journal of Applied Polymer Science, 2013, 128(6): 3993-4000.
doi: 10.1002/app.38642
[12] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(S2):1586-1589.
HUANG Aibin, LIU Caifeng, ZHANG Xiaohui. Research progress of polylactic acid blending[J]. Materials Reports, 2020, 34(S2):1586-1589.
[13] 唐多, 翁云宣, 刁晓倩, 等. 环境友好型材料增韧改性聚乳酸研究进展[J]. 中国科学:化学, 2020, 50(12): 1769-1780.
TANG Duo, WENG Yunxuan, DIAO Xiaoqian, et,al. Research progress on toughening and modification of polylactic acid with environmentally friendly mate-rials[J]. Scientia Sinica (Chimica), 2020, 50(12): 1769-1780.
[14] ZHU Yifan, LI Jiang, GUO Shaoyun. Structure and properties of D-polylactide/L-polylactide composites prepared by multistage tensile extrusion[J]. Polymer Materials Science & Engineering, 2019, 35(9): 62-66.
[15] 杨青山, 毛雯雯, 邓炳耀, 等. 熔纺大直径聚乳酸单丝的制备与性能研究[J]. 合成纤维工业, 2021, 44(5):1-7.
YANG Qingshan, MAO Wenwen, DENG Bingyao, et al. Preparation and properties of melt-spun large-diameter polylactic acid monofilament[J]. China Synthetic Fiber Industry, 2021, 44(5):1-7.
[16] 韩万里, 杨利宏, 王茹飘, 等. PLA微纳米纤维复合过滤非织造布的制备与性能[J]. 工程塑料应用, 2016, 44(2):51-56.
HAN Wanli, YANG Lihong, WANG Rupiao. et al. Preparation and properties of PLA nano-microfibers composite filtration nonwovens[J]. Engineering Plastics Application, 2016, 44(2):51-56.
[17] 常过, 邓炳耀, 刘庆生, 等. PLA纺粘非织造材料的制备和表征[J]. 纺织学报, 2012, 33(8):35-39.
CHANG Guo, DENG Bingyao, LIU Qingsheng, et al. Preperation and characterization of PLA spunbonded nonwoven material[J]. Journal of Textile Research, 2012, 33(8):35-39.
doi: 10.1177/004051756303300105
[18] 赵中国, 张鑫, 程少华, 等. 高熔体强度聚乳酸的结晶和发泡性能[J]. 材料导报, 2020, 34(20):20182-20186.
ZHAO Zhongguo, ZHANG Xin, CHENG Shaohua, et al. Crystallization and foaming properties of high-melt-strength poly (lactic acid)[J]. Materials Reports, 2020, 34(20):20182-20186.
[19] JIA Shikui, YU Demei, WANG Zhong, et al. Morphologies, crystallization, and mechanical properties of PLA: based nanocomposites: synergistic effects of PEG/HNTs[J]. Journal of Applied Polymer Science, 2019, 136(18): 47385.
doi: 10.1002/app.47385
[20] SUN Hui, PENG Siwei, WANG Mingjun, et al. Preparation and characterization of magnetic PLA/Fe3O4-g-PLLA composite melt blown nonwoven fabric for air filtration[J]. Journal of Engineered Fibers and Fabrics, 2020, 15: 1-13.
[21] LI Shaojie, CHEN Taoyi, LIAO Xiao, et al. Effect of macromolecular chain movement and the interchain interaction on crystalline nucleation and spherulite growth of polylactic acid under high-pressure CO2[J]. Macromolecules, 2020, 53(1): 312-322.
doi: 10.1021/acs.macromol.9b01601
[22] 孙辉, 张恒源, 咸玉龙, 等. TiO2-Ag/聚乳酸纳米复合纤维的制备及其抗菌性能[J]. 纺织学报, 2019, 40(4):1-6.
SUN Hui, ZHANG Hengyuan, XIAN Yulong, et al. Preparation and antibacterial properties of TiO2-Ag/poly(lactic acid) nano-composite fibers[J]. Journal of Textile Research, 2019, 40(4):1-6.
doi: 10.1177/004051757004000101
[23] CAO Le, JIA Shikui, ZHANG Qifeng, et al. Influence of peg with different molecular weight on crystallization and thermal property of PLA/GNPs composite[J]. New Chemical Materials, 2020, 48(2): 125-129.
[24] 邢剑, 徐珍珍, 李大伟, 等. 聚乳酸气流牵伸纤维的制备与性能研究[J]. 化工新型材料, 2020, 48(11): 183-187.
XING Jian, XU Zhenzhen, LI Dawei, et al. Preparation and characterization of air drafted PLA fiber[J]. New Chemical Materials, 2020, 48(11): 183-187.
[25] JANG Keno Soo. Exploring polyethylene/polypropylene nonwoven fabrics derived from two-dimensionally co-extruded composites: effects of delamination, consolidation, drawing and nanoparticle incorporation on mechanics, pore size and permeability[J]. Composites Science and Technology, 2018, 165: 380-387.
doi: 10.1016/j.compscitech.2018.07.022
[26] ZHEN Qi, ZHANG H, LI Han, et al. Polypropylene-secondary alkane sulfonate micro/nanofibrous fabrics with aligned fibers for enhanced anisotropic wetting performances[J]. Applied Surface Science, 2022, 583: 152486.
doi: 10.1016/j.apsusc.2022.152486
[1] SHI Lei, ZHANG Linwei, LIU Ya, XIA Lei, ZHUANG Xupin. Structural design and application of wet-laid nonwovens for separating membrane support [J]. Journal of Textile Research, 2022, 43(06): 15-21.
[2] LIU Yanlin, GU Weiwen, WEI Jianfei, WANG Wenqing, WANG Rui. Research progress and status quo of heat-resistant polylactic acid materials [J]. Journal of Textile Research, 2022, 43(06): 180-186.
[3] HUANG Yaoli, LU Cheng, JIANG Jinhua, CHEN Nanliang, SHAO Huiqi. Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film [J]. Journal of Textile Research, 2022, 43(06): 22-28.
[4] QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36.
[5] CHEN Peng, LIAO Shihao, SHEN Lanping, WANG Xuan, WANG Peng. Dyeing properties of polylactic acid/polyketone fibers with disperse dye [J]. Journal of Textile Research, 2022, 43(05): 12-17.
[6] ZHAO Bobo, WANG Liang, LI Jingyu, WAN Gang, XIA Zhaopeng, LIU Yong. Preparation and properties of hexamethylenetetramine cross-linked phenolic fibers [J]. Journal of Textile Research, 2022, 43(05): 57-62.
[7] SHAO Lingda, HUANG Jinbo, JIN Xiaoke, TIAN Wei, ZHU Chengyan. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites [J]. Journal of Textile Research, 2022, 43(04): 68-73.
[8] WANG Chenmeizi, WANG Ling, ZHANG Qingle, WANG Ying, XIA Xin. Preparation and property of composite hydrogel nonwoven based fresh-keeping material [J]. Journal of Textile Research, 2022, 43(03): 132-138.
[9] YU Fan, ZHENG Tao, TANG Tao, JIN Mengting, ZHU Hailin, YU Bin. Preparation of nonwoven composites based on metal-organic frame compounds and removal of hexavalent chromium from wastewater [J]. Journal of Textile Research, 2022, 43(03): 139-145.
[10] CHENG Yue, HU Yingjie, FU Yijun, LI Dawei, ZHANG Wei. Preparation and properties of antibacterial hemostatic nonwoven elastic bandage [J]. Journal of Textile Research, 2022, 43(03): 31-37.
[11] FANG Meiqi, WANG Qian, LI Yan, LI Chaojing, LI Hao, WANG Lu. Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence [J]. Journal of Textile Research, 2022, 43(03): 38-43.
[12] CHEN Yong, WU Jing, WANG Chaosheng, PAN Xiaohu, LI Naixiang, DAI Junming, WANG Huaping. Preparation and environmental degradation behavior of biodegradable poly (butylene adipate-co-terephthalate) fiber [J]. Journal of Textile Research, 2022, 43(02): 37-43.
[13] ZHAO Jiaming, SUN Hui, YU Bin, YANG Xiaodong. Preparation of CuO/polypropylene/ethylene-octene copolymer composite melt-blown nonwovens and their oil absorption properties [J]. Journal of Textile Research, 2022, 43(02): 89-97.
[14] DUO Yongchao, QIAN Xiaoming, GUO Xun, GAO Longfei, BAI He, ZHAO Baobao. Preparation and properties of hollow pie-segmented high shrinkage polyester/polyamide 6 microfiber nonwovens [J]. Journal of Textile Research, 2022, 43(02): 98-104.
[15] DING Qian, DENG Bingyao, LI Haoxuan. Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emission [J]. Journal of Textile Research, 2022, 43(01): 36-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!