Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 86-93.doi: 10.13475/j.fzxb.20210203908
• Textile Engineering • Previous Articles Next Articles
SUN Huanwei1, ZHANG Heng1,2(), CUI Jingqiang2,3, ZHU Feichao4, WANG Guofeng2,3, SU Tianyang2,3, ZHEN Qi1
CLC Number:
[1] |
DZIERZKOWSKA E, SCISŁOWSKA-CZARNECKA A, KUDZIN M, et al. Effects of process parameters on structure and properties of melt-blown poly(lactic acid) nonwovens for skin regeneration[J]. Journal of Functional Biomaterials, 2021, 12(1): 16.
doi: 10.3390/jfb12010016 |
[2] | 朱斐超, 张宇静, 张强, 等. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(1):49-57. |
ZHU Feichao, ZHANG Yujing, ZHANG Qiang, et al. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens[J]. Journal of Textile Research, 2022, 43(1):49-57. | |
[3] |
ZHANG Jianfeng, CHEN Gangjin, BHAT G S, et al. Electret characteristics of melt-blown polylactic acid fabrics for air filtration application[J]. Journal of Applied Polymer Science, 2020, 137(4): 48309.
doi: 10.1002/app.48309 |
[4] |
VADAS D, KMETYKÓ D, MAROSI G, et al. Application of melt-blown poly (lactic acid) fibres in self-reinforced composites[J]. Polymers, 2018, 10(7): 766.
doi: 10.3390/polym10070766 |
[5] | 徐燕. 口罩用聚乳酸熔喷布的专利申请现状研究[J]. 化工管理, 2020(25): 89-92. |
XU Yan. Study on patent application status of polylactic acid melt-blown nonwovens for masks[J]. Chemical Enterprise Management, 2020(25): 89-92. | |
[6] |
XU Yuanqiang, ZHANG Xiaomin, HAO Xibo, et al. Micro/nanofibrous nonwovens with high filtration performance and radiative heat dissipation property for personal protective face mask[J]. Chemical Engineering Journal, 2021, 423: 130175.
doi: 10.1016/j.cej.2021.130175 |
[7] |
ZHU Feichao, YU Bin, SU Juanjuan, et al. Study on PLA/PA11 bio-based toughening melt-blown nonwov-ens[J]. Autex Research Journal, 2020, 20(1): 24-31.
doi: 10.2478/aut-2019-0002 |
[8] | 张矿生, 唐梅荣, 薛小佳, 等. 聚乳酸/聚乙二醇共混物的结晶与降解行为[J]. 化工学报, 2021, 72(2): 1181-1190. |
ZHANG Kuangsheng, TANG Meirong, XUE Xiaojia, et al. Crystallization and degradation behavior of poly(lactic acid)/poly(ethylene glycol) blends[J]. CIESC Journal, 2021, 72(2): 1181-1190. | |
[9] |
WANG Ping, CUI Zhaopei, HU Xianhai, et al. Effect of ionic liquid segments of copolymer on compatibilization process and dielectric behavior of polylactide/polyvinylidene fluoride blends[J]. Journal of Applied Polymer Science, 2021, 138(3): 49702.
doi: 10.1002/app.49702 |
[10] | 王巧姣. 结晶性尼龙11粒子与弹性体协同增韧聚乳酸及其机理研究[D]. 合肥: 中国科学技术大学, 2020: 6-10. |
WANG Qiaojiao. Study on toughening of polylactide-based blends through crystalline nylon 11 particles and elastomer[D]. Hefei: University of Science and Technology of China, 2020:6-10. | |
[11] |
JIANG Jiandi, SU Lili, ZHANG Kun, et al. Rubber-toughened PLA blends with low thermal expansion[J]. Journal of Applied Polymer Science, 2013, 128(6): 3993-4000.
doi: 10.1002/app.38642 |
[12] | 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(S2):1586-1589. |
HUANG Aibin, LIU Caifeng, ZHANG Xiaohui. Research progress of polylactic acid blending[J]. Materials Reports, 2020, 34(S2):1586-1589. | |
[13] | 唐多, 翁云宣, 刁晓倩, 等. 环境友好型材料增韧改性聚乳酸研究进展[J]. 中国科学:化学, 2020, 50(12): 1769-1780. |
TANG Duo, WENG Yunxuan, DIAO Xiaoqian, et,al. Research progress on toughening and modification of polylactic acid with environmentally friendly mate-rials[J]. Scientia Sinica (Chimica), 2020, 50(12): 1769-1780. | |
[14] | ZHU Yifan, LI Jiang, GUO Shaoyun. Structure and properties of D-polylactide/L-polylactide composites prepared by multistage tensile extrusion[J]. Polymer Materials Science & Engineering, 2019, 35(9): 62-66. |
[15] | 杨青山, 毛雯雯, 邓炳耀, 等. 熔纺大直径聚乳酸单丝的制备与性能研究[J]. 合成纤维工业, 2021, 44(5):1-7. |
YANG Qingshan, MAO Wenwen, DENG Bingyao, et al. Preparation and properties of melt-spun large-diameter polylactic acid monofilament[J]. China Synthetic Fiber Industry, 2021, 44(5):1-7. | |
[16] | 韩万里, 杨利宏, 王茹飘, 等. PLA微纳米纤维复合过滤非织造布的制备与性能[J]. 工程塑料应用, 2016, 44(2):51-56. |
HAN Wanli, YANG Lihong, WANG Rupiao. et al. Preparation and properties of PLA nano-microfibers composite filtration nonwovens[J]. Engineering Plastics Application, 2016, 44(2):51-56. | |
[17] | 常过, 邓炳耀, 刘庆生, 等. PLA纺粘非织造材料的制备和表征[J]. 纺织学报, 2012, 33(8):35-39. |
CHANG Guo, DENG Bingyao, LIU Qingsheng, et al. Preperation and characterization of PLA spunbonded nonwoven material[J]. Journal of Textile Research, 2012, 33(8):35-39.
doi: 10.1177/004051756303300105 |
|
[18] | 赵中国, 张鑫, 程少华, 等. 高熔体强度聚乳酸的结晶和发泡性能[J]. 材料导报, 2020, 34(20):20182-20186. |
ZHAO Zhongguo, ZHANG Xin, CHENG Shaohua, et al. Crystallization and foaming properties of high-melt-strength poly (lactic acid)[J]. Materials Reports, 2020, 34(20):20182-20186. | |
[19] |
JIA Shikui, YU Demei, WANG Zhong, et al. Morphologies, crystallization, and mechanical properties of PLA: based nanocomposites: synergistic effects of PEG/HNTs[J]. Journal of Applied Polymer Science, 2019, 136(18): 47385.
doi: 10.1002/app.47385 |
[20] | SUN Hui, PENG Siwei, WANG Mingjun, et al. Preparation and characterization of magnetic PLA/Fe3O4-g-PLLA composite melt blown nonwoven fabric for air filtration[J]. Journal of Engineered Fibers and Fabrics, 2020, 15: 1-13. |
[21] |
LI Shaojie, CHEN Taoyi, LIAO Xiao, et al. Effect of macromolecular chain movement and the interchain interaction on crystalline nucleation and spherulite growth of polylactic acid under high-pressure CO2[J]. Macromolecules, 2020, 53(1): 312-322.
doi: 10.1021/acs.macromol.9b01601 |
[22] | 孙辉, 张恒源, 咸玉龙, 等. TiO2-Ag/聚乳酸纳米复合纤维的制备及其抗菌性能[J]. 纺织学报, 2019, 40(4):1-6. |
SUN Hui, ZHANG Hengyuan, XIAN Yulong, et al. Preparation and antibacterial properties of TiO2-Ag/poly(lactic acid) nano-composite fibers[J]. Journal of Textile Research, 2019, 40(4):1-6.
doi: 10.1177/004051757004000101 |
|
[23] | CAO Le, JIA Shikui, ZHANG Qifeng, et al. Influence of peg with different molecular weight on crystallization and thermal property of PLA/GNPs composite[J]. New Chemical Materials, 2020, 48(2): 125-129. |
[24] | 邢剑, 徐珍珍, 李大伟, 等. 聚乳酸气流牵伸纤维的制备与性能研究[J]. 化工新型材料, 2020, 48(11): 183-187. |
XING Jian, XU Zhenzhen, LI Dawei, et al. Preparation and characterization of air drafted PLA fiber[J]. New Chemical Materials, 2020, 48(11): 183-187. | |
[25] |
JANG Keno Soo. Exploring polyethylene/polypropylene nonwoven fabrics derived from two-dimensionally co-extruded composites: effects of delamination, consolidation, drawing and nanoparticle incorporation on mechanics, pore size and permeability[J]. Composites Science and Technology, 2018, 165: 380-387.
doi: 10.1016/j.compscitech.2018.07.022 |
[26] |
ZHEN Qi, ZHANG H, LI Han, et al. Polypropylene-secondary alkane sulfonate micro/nanofibrous fabrics with aligned fibers for enhanced anisotropic wetting performances[J]. Applied Surface Science, 2022, 583: 152486.
doi: 10.1016/j.apsusc.2022.152486 |
[1] | SHI Lei, ZHANG Linwei, LIU Ya, XIA Lei, ZHUANG Xupin. Structural design and application of wet-laid nonwovens for separating membrane support [J]. Journal of Textile Research, 2022, 43(06): 15-21. |
[2] | LIU Yanlin, GU Weiwen, WEI Jianfei, WANG Wenqing, WANG Rui. Research progress and status quo of heat-resistant polylactic acid materials [J]. Journal of Textile Research, 2022, 43(06): 180-186. |
[3] | HUANG Yaoli, LU Cheng, JIANG Jinhua, CHEN Nanliang, SHAO Huiqi. Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film [J]. Journal of Textile Research, 2022, 43(06): 22-28. |
[4] | QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36. |
[5] | CHEN Peng, LIAO Shihao, SHEN Lanping, WANG Xuan, WANG Peng. Dyeing properties of polylactic acid/polyketone fibers with disperse dye [J]. Journal of Textile Research, 2022, 43(05): 12-17. |
[6] | ZHAO Bobo, WANG Liang, LI Jingyu, WAN Gang, XIA Zhaopeng, LIU Yong. Preparation and properties of hexamethylenetetramine cross-linked phenolic fibers [J]. Journal of Textile Research, 2022, 43(05): 57-62. |
[7] | SHAO Lingda, HUANG Jinbo, JIN Xiaoke, TIAN Wei, ZHU Chengyan. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites [J]. Journal of Textile Research, 2022, 43(04): 68-73. |
[8] | WANG Chenmeizi, WANG Ling, ZHANG Qingle, WANG Ying, XIA Xin. Preparation and property of composite hydrogel nonwoven based fresh-keeping material [J]. Journal of Textile Research, 2022, 43(03): 132-138. |
[9] | YU Fan, ZHENG Tao, TANG Tao, JIN Mengting, ZHU Hailin, YU Bin. Preparation of nonwoven composites based on metal-organic frame compounds and removal of hexavalent chromium from wastewater [J]. Journal of Textile Research, 2022, 43(03): 139-145. |
[10] | CHENG Yue, HU Yingjie, FU Yijun, LI Dawei, ZHANG Wei. Preparation and properties of antibacterial hemostatic nonwoven elastic bandage [J]. Journal of Textile Research, 2022, 43(03): 31-37. |
[11] | FANG Meiqi, WANG Qian, LI Yan, LI Chaojing, LI Hao, WANG Lu. Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence [J]. Journal of Textile Research, 2022, 43(03): 38-43. |
[12] | CHEN Yong, WU Jing, WANG Chaosheng, PAN Xiaohu, LI Naixiang, DAI Junming, WANG Huaping. Preparation and environmental degradation behavior of biodegradable poly (butylene adipate-co-terephthalate) fiber [J]. Journal of Textile Research, 2022, 43(02): 37-43. |
[13] | ZHAO Jiaming, SUN Hui, YU Bin, YANG Xiaodong. Preparation of CuO/polypropylene/ethylene-octene copolymer composite melt-blown nonwovens and their oil absorption properties [J]. Journal of Textile Research, 2022, 43(02): 89-97. |
[14] | DUO Yongchao, QIAN Xiaoming, GUO Xun, GAO Longfei, BAI He, ZHAO Baobao. Preparation and properties of hollow pie-segmented high shrinkage polyester/polyamide 6 microfiber nonwovens [J]. Journal of Textile Research, 2022, 43(02): 98-104. |
[15] | DING Qian, DENG Bingyao, LI Haoxuan. Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emission [J]. Journal of Textile Research, 2022, 43(01): 36-42. |
|