Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 60-66.doi: 10.13475/j.fzxb.20210306007

• Textile Engineering • Previous Articles     Next Articles

Thermal and moisture comfort performance of polyethylene knitted fabric

QIAN Juan1,2, XIE Ting1, ZHANG Peihua1(), FU Shaoju1   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. College of Textiles and Clothing, Xinjiang University, Urumqi, Xinjiang 830046, China
  • Received:2021-03-15 Revised:2022-03-20 Online:2022-07-15 Published:2022-07-29
  • Contact: ZHANG Peihua E-mail:phzh@dhu.edu.cn

Abstract:

In order to study the influence of structure parameters of polyethylene knitted fabric on thermal and moisture comfort performance, three specifications of polyethylene filaments were selected to prepare double rib knitted fabrics. As comparative samples, polyester and cool polyester filaments were selected as well to prepare fabrics with the same structure. The effect of the type of raw material, the under-fill coefficient and the twist of the filaments on the porosity, air permeability, thermal conductivity and moisture permeability were investigated. It was found that when the fabric structure was the same, the raw material and under-fill coefficient were closely related to the air permeability, moisture permeability, and thermal conductivity of polyethylene fabric. Yarn twist was closely related to the thermal conductivity and moisture conductivity. Compared with polyester and cool polyester, polyethylene fiber was preferred for preparing cool functional textiles because of its better air permeability, moisture permeability and thermal conductivity resulting from the grooves on the surface, higher crystallization and orientation of the filament.

Key words: polyethylene filament, knitted fabric, thermal and moisture comfort, heat transfer property, moisture conductivity

CLC Number: 

  • TS156

Tab.1

Structural parameters of filaments"

试样编号 线密度 结晶度/% 取向度/%
PE1 11.1 tex(72 f) 60.90 85.4
PE2 11.1 tex(48 f) 63.89 81.4
PE3 8.3 tex(24 f) 58.83 78.3
PET 8.3 tex(36 f) 36.72 79.6
CPET 8.3 tex(72 f) 30.29 84.8

Fig.1

SEM images of section and surface of different filaments"

Tab.2

Specification parameters of knitting fabrics"

织物编号 原料 捻度/(捻·m-1) 加捻长丝线密度/tex 厚度/mm 面密度/(g·m-2) 未充满系数 孔隙率/%
F1 PE1 100 10.61 0.802±0.009 132.96±1.02 33.60 83.0
F2 PE1 150 10.96 0.849±0.010 136.16±1.13 38.72 83.3
F3 PE1 200 11.09 0.860±0.003 138.35±1.62 34.79 83.2
F4 PE2 100 11.02 0.860±0.008 148.84±1.21 30.51 82.0
F5 PE2 150 11.14 0.883±0.006 150.02±1.34 31.23 82.3
F6 PE2 200 11.30 0.887±0.003 164.39±2.01 35.38 80.7
F7 PE3 100 8.53 0.711±0.006 105.83±1.52 34.14 84.5
F8 PE3 150 8.66 0.728±0.014 107.66±0.72 34.10 84.6
F9 PE3 200 8.81 0.731±0.010 109.91±1.14 33.85 84.3
F10 PET 100 8.31 0.862±0.009 107.47±2.01 56.28 91.0
F11 CPET 100 8.11 1.000±0.005 112.67±2.25 61.03 91.8

Fig.2

Correlation between porosity and under-fill coefficient"

Fig.3

Permeability of samples"

Fig.4

qmax value when temperature difference at 15 ℃"

Fig.5

Thermal resistance and thermal conductivity"

Tab.3

Moisture resistance of samples"

织物
编号
湿阻/
(m2·Pa·W-1)
透湿率/
(g·m-2·h-1·Pa-1)
透湿
指数
F1 2.10 0.76 0.39
F2 2.36 0.68 0.41
F3 2.12 0.75 0.52
F4 2.48 0.64 0.30
F5 2.62 0.61 0.45
F6 2.89 0.55 0.46
F7 2.12 0.75 0.55
F8 1.88 0.85 0.65
F9 1.91 0.84 0.66
F10 1.98 0.81 1.02
F11 2.13 0.75 1.00

Fig.6

Wicking height-time curve of different fabrics with same twist. (a) Wicking height in wale; (b) Wicking height in course"

Fig.7

Wicking height-time curves in course of PE fabrics with different twist factor. (a) Fabrics made up of PE1; (b) Fabrics made up of PE2; (c) Fabrics made up of PE3"

Fig.8

Wicking height-time curves in wale of PE fabrics with different twist factor. (a) Fabrics made up of PE1;(b) Fabrics made up of PE2;(c) Fabrics made up of PE3"

[1] KAR F, FAN J, YU W, et al. Effects of thermal and moisture transport properties of T-shirts on wearer's comfort sensations[J]. Fibers & Polymers, 2007, 8(5):537-542.
[2] YANG Y, YU X, CHEN L, et al. Effect of knitting structure and yarn composition on thermal comfort properties of bi-layer knitted fabrics[J]. Textile Research Journal, 2020, 91(1/2):3-17.
doi: 10.1177/0040517520932557
[3] 张慧敏, 沈兰萍. 组织结构对功能性轻薄凉爽织物性能的影响[J]. 上海纺织科技, 2018, 46(4):31-33.
ZHANG Huimin, SHEN Lanping. Effect of weave structure on the properties of functional cool lightweight fabric[J]. Shanghai Textile Science & Technology, 2018, 46(4):31-33.
[4] JUNGHYUN, PARK, HWA-SOOK, et al. Knitted fabric properties influencing coolness to the touch and the relationship between subjective and objective coolness measurements[J]. Textile Research Journal, 2018, 88(17):1931-1942.
doi: 10.1177/0040517517715079
[5] YANG Y, CHEN L, TAYYAB N, et al. Influence of fabric structure and finishing pattern on the thermal and moisture management properties of unidirectional water transport knitted polyester fabrics[J]. Textile Research Journal, 2019, 89(10):1983-96.
doi: 10.1177/0040517518783349
[6] VIVEKANADAN M V, RAJ S, SREENIVASAN S, et al. Parameters affecting warm-cool feeling in cotton denim fabrics[J]. Indian Journal of Fiber and Textile Research, 2011, 36(2):117-121.
[7] 李丽, 肖红, 程博闻, 等. 单纤维及其集合体的导热性能研究现状[J]. 丝绸, 2016, 53(8):20-25.
LI Li, XIAO Hong, CHENG Bowen, et al. Research status of thermal conductivity of single fiber and fiber assembly[J]. Journal of Silk, 2016, 53(8):20-25.
[8] 方芳, 李艳清, 李秀敏, 等. 改性涤纶织物的凉爽性能研究[J]. 丝绸, 2012, 49(9):30-34.
FANG Fang, LI Yanqing, LI Xiumin, et al. Study on the coolness property of modified polyester fabrics[J]. Journal of Silk, 2012, 49(9):30-34.
[9] 张海霞, 张喜昌. 凉爽锦纶纤维的热湿性能[J]. 纺织学报, 2016, 37(7): 39-43.
ZHANG Haixia, ZHANG Xichang. Heat-moisture performance of cool polyamide fibers[J]. Journal of Textile Research, 2016, 37(7):39-43.
[10] 张玉升, 谢艳萍. 凉爽锦纶混纺针织物的制备及其性能分析[J]. 毛纺科技, 2018, 46(9): 16-19.
ZHANG Yusheng, XIE Yanping. Preparation and performance analysis of cool nylon blended knit fabric[J]. Wool Textile Journal, 2018, 46(9):16-19.
[11] YANG Y, YU X, WANG X, et al. Effect of jade nanoparticle content and twist of cool-touch polyester filaments on comfort performance of knitted fabrics[J]. Textile Research Journal, 2020, 90(21/22):2385-2398.
doi: 10.1177/0040517520920950
[12] YANG Y, YU X, WANG X, et al. Thermal comfort properties of cool-touch nylon and common nylon knitted fabrics with different fiber fineness and cross-section[J]. Industria Textile, 2021, 72(2):217-24.
[13] 章为敬, 杨阳, 张佩华. 吸湿凉爽功能纺织品研究进展[J]. 针织工业, 2020, 00(2):1-5.
ZHANG Weijing, YANG Yang, ZHANG Peihua. Research progress of hygroscopic and cooling functional textiles[J]. Knitting Industries, 2020(2):1-5.
[14] 山中淳彦, 高尾智明. 高强度聚乙烯纤维的热导率及其应用[J]. 合成纤维, 2013, 42(1):46-51.
YAMANAKA JUNHIKO, TAKAO TOMAKI, Thermal conductivity of high-strength polyethylene fiber and its application[J]. Synthetic Fiber in China, 2013, 42(1):46-51.
[15] 李顺希, 许志强, 詹莹韬, 等. 高密度聚乙烯/聚酰胺6复合纤维的制备及性能[J]. 合成纤维工业, 2020, 43(1):42-45,49.
LI Shunxi, XU Zhiqiang, ZHAN Yingtao, et al. Preparation and properties of high-density polyethylene/polyamide 6 composite fiber[J]. China Synthetic Fiber Industry, 2020, 43(1):42-45,49.
[16] 于伟东. 纺织物理[M]. 上海东华大学出版社, 2002:31.
YU Weidong. Textile physics[M]. Shanghai: Donghua University Press, 2002:31.
[17] 李莹莹, 朱冬生. 超高分子量聚乙烯基纳米复合材料的导热性能研究[J]. 化工新型材料, 2009, 37(1): 72-74.
LI Yingying, ZHU Dongsheng. Thermal conductivity of ultra-high molecular weight polyethylene nano-composite[J]. New Chemical Materials, 2009, 37(1):72-74.
[18] ZHANG X, WANG Y, XIA R, et al. Effect of chain configuration on thermal conductivity of polyethylene-a molecular dynamic simulation study[J]. Chinese Journal of Polymer Science, 2020, 38(12):8.
[19] 周文英, 张亚婷. 本征型导热高分子材料[J]. 合成树脂及塑料, 2010, 27(2):69-73,84.
ZHOU Wenying, ZHANG Yating. Progress in intrinsic thermal conductive polymers[J]. China Synthetic Resin and Plastics, 2010, 27(2):69-73,84.
[1] RU Xin, ZHU Wanzhen, SHI Weimin, PENG Laihu. Deformation prediction and simulation of weft knitted fabrics with non-uniform density distribution [J]. Journal of Textile Research, 2022, 43(06): 63-69.
[2] YANG Liu, LI Yujia, ZHANG Xin, HE Wenjing, TONG Shenghao, MA Lei, ZHANG Yi, ZHANG Ruiyun. Effect of tightness of colored knitted fabrics on color prediction [J]. Journal of Textile Research, 2022, 43(05): 104-108.
[3] WANG Jianping, MIAO Mingzhu, SHEN Deyao, YAO Xiaofeng. Development and performance evaluation of knitted fabric with bionic bird feather structure [J]. Journal of Textile Research, 2022, 43(04): 55-61.
[4] XIONG Jingjing, YANG Xue, SU Jing, WANG Hongbo. Testing method for fabric moisture conductivity based on image technology [J]. Journal of Textile Research, 2021, 42(12): 70-75.
[5] YU Rufang, HONG Xinghua, ZHU Chengyan, JIN Zimin, WAN Junmin. Electrical heating properties of fabrics coated by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(10): 126-131.
[6] CHEN Ke, ZHANG Di, JI Yijun, LE Rongqing, SU Xuzhong. Effect of combed polyester top content on properties of polyester knitted fabrics [J]. Journal of Textile Research, 2021, 42(09): 66-69.
[7] YUAN Luning, WANG Jianping, ZHANG Bingjie, ZHANG Yuting, YAO Xiaofeng. Topological optimization design of dynamic moisture and temperature control for three dimensional knitted fabrics [J]. Journal of Textile Research, 2021, 42(09): 70-75.
[8] LI Yifei, ZHENG Min, CHANGZHU Ningzi, LI Liyan, CAO Yuanming, ZHAI Wangyi. Cotton knitted fabrics treated with two-dimensional transitional metal carbide Ti3C2Tx and property analysis [J]. Journal of Textile Research, 2021, 42(06): 120-127.
[9] WANG Li, ZHANG Bingjie, WANG Jianping, LIU Li, YANG Yalan, YAO Xiaofeng, LI Qianwen, LU You. Development and performance evaluation of bionic knitted winter sports fabrics [J]. Journal of Textile Research, 2021, 42(05): 66-72.
[10] HU Xudong, SONG Yanfeng, RU Xin, PENG Laihu. Modeling and loop length reverse design for reducing diameter tubular weft knitted fabrics [J]. Journal of Textile Research, 2021, 42(04): 80-84.
[11] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[12] YANG Yang, YU Xin, ZHANG Weijing, ZHANG Peihua. Evaluation method and prediction model establishment of cooling performance of knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 95-101.
[13] LÜ Changliang, HAO Zhiyuan, CHEN Huimin, ZHANG Huile, YUE Xiaoli. Finite element analysis of loop shape in weft knitted fabrics with small deformation based on homogenization theory [J]. Journal of Textile Research, 2021, 42(03): 21-26.
[14] DING Zihan, QIU Hua. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics [J]. Journal of Textile Research, 2021, 42(03): 130-135.
[15] LIU Lidong, LI Xinrong, LIU Hanbang, LI Dandan. Electrostatic adsorption model based on characteristics of weft knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 161-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .