Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 155-161.doi: 10.13475/j.fzxb.20210704507

• Apparel Engineering • Previous Articles     Next Articles

Study on sensory evaluation of performance of washed wool sweaters based on ridge regression method

ZHAO Xin1,2, WANG Caixia3, ZHOU Xiaopi3, DING Xuemei1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Panasonic Appliance (China) Co., Ltd., Hangzhou, Zhejiang 310018, China
  • Received:2021-07-15 Revised:2022-04-04 Online:2022-07-15 Published:2022-07-29
  • Contact: DING Xuemei E-mail:fddingxm@dhu.edu.cn

Abstract:

For clothing products, there is usually a collinearity relationship between different sensory properties evaluation. In order to obtain the relationship, 17 wool sweaters were used as the experimental objects, by using on-the-spot questionnaire survey, 9 specific sensory evaluations from 30 women assessors were obtained, which were then analyzed using the ridge regression method, so as to achieve the quantitative relationships among the overall impression and different sensory property evaluations of clothing. The weights of different sensory properties on the overall impression are sorted as flatness, elasticity, bulkiness, size proportion effect, neckline shape, hem shape, fuzz and pilling, damage, armhole joint shape. In addition, the accuracy of regression fitting between the predicted value from ridge regression equation and the actual surveyed value reaches 0.977. It does not only predict the consumers' sensory evaluation of product, but also help the enterprises to accurately focus on the consumers about products. In conclusion, ridge regression is proved to be a good method to study the quantitative relationship of sensory property evaluation with collinear relationship, and it can be widely used in kansei engineering of a variety of garments.

Key words: ridge regression method, wool sweater, washed appearance, overall impression, sensory evaluation, kansei engineering

CLC Number: 

  • TS941.12

Tab.1

Parameters of wool sweater"

成分 纱线线
密度/tex
纱线
类型
组织
结构
面密度/
(g·m-2)
厚度/
mm
羊毛 38.462 粗纺 纬平针 300 2.115

Fig.1

Photography of unwashed wool sweater with a score of 5. (a) Front; (b) Back"

Fig.2

Picture of washed wool sweaters"

Tab.2

Kendall's W test statistics"

样本量 协同系数 卡方 df 检验概率P
30 0.6 230.317 12 0.000

Tab.3

Statistical value of sensory evaluation of wool sweaters"

编号 X1 X2 X3 X4 X5 X6 X7 X8 X9 Y
A-1 4.0 4.1 3.8 3.8 4.1 4.1 3.9 4.0 4.1 4.1
A-3 4.1 4.2 4.1 4.0 4.0 4.2 4.1 4.0 4.0 4.0
A-5 4.2 4.2 4.2 4.1 4.3 4.2 4.3 4.1 4.0 4.3
A-10 4.1 4.3 4.0 3.9 4.1 4.2 4.0 3.9 3.8 4.1
B-1 3.2 3.6 3.3 3.3 3.3 3.3 3.4 3.5 3.5 3.4
B-3 3.3 3.5 3.3 3.1 3.2 3.4 3.4 3.3 3.2 3.3
B-5 2.7 3.1 2.8 3.1 2.6 3.1 3.0 2.8 2.7 2.7
B-10 2.0 2.4 2.2 2.1 2.9 3.0 2.8 1.9 1.8 2.1
C-1 3.5 3.9 3.4 3.5 3.3 3.5 3.4 3.5 3.3 3.5
C-3 3.4 3.6 3.3 3.3 3.1 3.3 3.2 3.4 3.3 3.2
C-5 2.9 3.6 3.0 3.0 2.9 3.2 3.1 3.1 3.2 3.0
C-10 3.1 3.6 3.3 3.1 3.3 3.2 3.1 3.2 3.1 3.2
D-1 1.3 2.1 1.7 1.6 2.0 1.9 1.9 1.7 1.4 1.5

Tab.4

Fitting accuracy of linear regression using least square method"

R R2 调整后R2 标准估计的误差
1.000 0.999 0.997 0.042 29

Tab.5

Model of linear regression using least square method"

模型
参数
非标准化 标准化 共线性统计量
系数 标准误差 系数 允差 膨胀因子VIF
(常量) -0.11 0.24
X1 0.82 0.29 0.91 0.00 424.30
X2 0.58 0.22 0.48 0.01 136.85
X3 -0.94 0.40 -0.84 0.00 525.54
X4 0.19 0.09 0.18 0.03 30.56
X5 0.73 0.17 0.61 0.01 79.87
X6 -0.44 0.30 -0.36 0.00 247.35
X7 0.35 0.35 0.27 0.00 292.16
X8 -1.28 0.75 -1.23 0.00 2 141.73
X9 0.97 0.46 1.02 0.00 959.66

Fig.3

Ridge trace map"

Tab.6

Fitting accuracy of ridge regression"

RMult R2 R A r j 2 标准差(SE)
0.997 0.994 0.977 0.118

Tab.7

Model of ridge regression"

模型参数 非标准化 标准化
系数 标准误差 系数
X1 0.109 0.020 0.120
X2 0.144 0.036 0.120
X3 0.118 0.022 0.105
X4 0.058 0.045 0.053
X5 0.178 0.044 0.150
X6 0.129 0.043 0.105
X7 0.129 0.030 0.098
X8 0.131 0.025 0.126
X9 0.119 0.028 0.126
常数 -0.434 0.176 0.000

Fig.4

Comparison between survey value and ridge regression predicted value of overall evaluation of wool sweaters"

[1] 长盯三生. 消费产品设计中的感性工学[J]. 人类工学应用杂志, 2002(10):5-9.
NAGAMACHI M. Kansei engineering in consumer produet design[J]. The Magazine of Human Factors Applications, 2002(10): 5-9.
[2] 刘国联. 服装心理学[M]. 上海: 东华大学出版社, 2004:25-27.
LIU Guolian. Psychology of clothing[M]. Shanghai: Donghua University Press, 2004:25-27.
[3] 叶立诚. 美学[M]. 北京: 中国纺织出版社, 2005:30-35.
YE Licheng. Aesthetics[M]. Beijing: China Textile & Apparel Press, 2005:30-35.
[4] 赵秋芳. 感性工学及其在产品设计中的应用研究[D]. 济南: 山东大学, 2008:11-17.
ZHAO Qiufang. Research on kansei engineering and its application in product design[D]. Ji'nan: Shandong University, 2008:11-17.
[5] 李倩文, 王建萍, 杨雅岚, 等. 基于数量化理论Ⅰ的男西装款式要素感性评价[J]. 纺织学报, 2021, 42(5): 155-161.
LI Qianwen, WANG Jianping, YANG Yalan, et al. Perceptual valuation of men's suit style elements based on quantitative theory I[J]. Journal of Textile Research, 2021, 42(5): 155-161.
doi: 10.1177/004051757204200304
[6] 胡珊, 符凯杰, 蒋旭, 等. 基于感性工学的衣柜造型设计[J]. 林业工程学报, 2021, 6(4): 176-183.
HU Shan, FU Kaijie, JIANG Xu, et al. Wardrobe modeling design based on Kansei Engineering[J]. Journal of Forestry Engineering, 2021, 6(4): 176-183.
[7] 刘明远, 贺成柱, 邹建强. 基于虚拟感性工学的农业装备形态设计研究[J]. 包装工程, 2022, 43(6):1-11.
LIU Mingyuan, HE Chengzhu, ZOU Jianqiang. Research on agricultural equipment form design based on virtual kansei engineering[J]. Packaging Engineering, 2022, 43(6):1-11.
[8] 甘艳, 纪璎芮, 师宇哲, 等. 用户感性认知与产品感性设计方法及应用[J]. 包装工程, 2021, 42(2): 22-27,34.
GAN Yan, JI Yingrui, SHI Yuzhe, et al. Method and application of user perceptual cognition and product perceptual design[J]. Packaging Engineering, 2021, 42(2): 22-27,34.
[9] 陈弈菲, 刘驰. 宋代国画图案在旗袍设计中的感性工学应用[J]. 毛纺科技, 2021, 49(3): 47-53.
CHEN Yifei, LIU Chi. Kansei engineering application of song dynasty traditional chinese painting pattern in cheongsam design[J]. Wool Textile Journal, 2021, 49(3): 47-53.
[10] 宋莹, 王宝环, 温兰. 基于感性工学的针织服装领型设计[J]. 针织工业, 2017(10): 58-61.
SONG Ying, WANG Baohuan, WEN Lan. Knitwear collar design based on Kankan Engineering[J]. Knitting Industries, 2017(10): 58-61.
[11] 吕晓娟, 徐军. 基于感性工学的女装色彩搭配评价[J]. 毛纺科技, 2021, 49(2): 94-98.
LÜ Xiaojuan, XU Jun. Evaluation of women's color matching based on Kansei Engineering[J]. Wool Textile Journal, 2021, 49(2): 94-98.
[12] 黄丽婷, 刘驰. 基于感性工学的运动内衣背部款式造型研究[J]. 针织工业, 2021(1): 66-69.
HUANG Liting, LIU Chi. Research on back style of sports underwear based on kansei engineering[J]. Knitting Industries, 2021(1): 66-69.
[13] 郝新月, 刘凯旋. 袜子装饰图案设计的感性评价研究[J]. 毛纺科技, 2021, 49(3): 54-59.
HAO Xinyue, LIU Kaixuan. Research on perceptual evaluation of sock decorative pattern design[J]. Wool Textile Journal, 2021, 49(3): 54-59.
[14] 洪文进, 唐颖, 沈雷. 缓解女性生理期疼痛的内裤设计及性能评价[J]. 针织工业, 2021(3): 67-70.
HONG Wenjin, TANG Ying, SHEN Lei. Design and performance evaluation of underwear for relieving menstrual pain in women[J]. Knitting Industries, 2021(3): 67-70.
[15] 何鸿举, 王洋洋, 王魏, 等. 基于不同预处理高光谱信息的鸡肉滴水损失率快速预测研究[J]. 食品工业科技, 2020, 41(18): 252-256,279.
HE Hongju, WANG Yangyang, WANG Wei, et al. Rapid prediction of chicken drip loss rate based on different pretreated hyperspectral information[J]. Science and Technology of Food Industry, 2020, 41(18): 252-256,279.
[16] 闵志强, 胡云云, 顾丽. 基于多元线性回归的西昌市云南松蓄积量模型研究[J]. 西北林学院学报, 2017, 32(3): 186-190.
MIN Zhiqiang, HU Yunyun, GU Li. Study on forest volume model of pinus yunnanensis based on multiple linear regression in Xichang city[J]. Journal of Northwest Forestry University, 2017, 32(3): 186-190.
[17] 余良坤. 线性回归法在水文预测预报中的应用[J]. 低碳世界, 2017(8): 45-46.
YU Liangkun. Application of linear regression method in hydrological prediction and prediction[J]. Low Carbon World, 2017(8): 45-46.
[18] 张国兴, 苏钊贤. 黄河流域交通运输碳排放的影响因素分解与情景预测[J]. 管理评论, 2020, 32(12): 283-294.
ZHANG Guoxing, SU Zhaoxian. Factors decomposition and scenario prediction of carbon emission from transportation in the Yellow River basin[J]. Management Review, 2020, 32(12): 283-294.
[19] 高扬, 李雯. 东北三省大豆与玉米生产替代关系研究:基于超越对数生产函数的岭回归估计[J]. 价格理论与实践, 2020(8): 1-5.
GAO Yang, LI Wen. Study on substitution relationship between soybean and corn production in three northeastern provinces: ridge regression estimation based on translog production function[J]. Price Theory and Practice, 2020(8): 1-5.
[20] 岳萌萌, 舒涛, 王嘉博, 等. 基于Image 2和岭回归模型估测肉牛体尺、体重[J]. 黑龙江畜牧兽医, 2020(22): 41-43,49.
YUE Mengmeng, SHU Tao, WANG Jiabo, et al. Estimation of body size and weight of beef cattle based on Image 2 and Ridge regression model[J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2020(22): 41-43,49.
[21] 杨春霞, 秦家鹏, 王庆, 等. 基于多车道加权融合的短时交通流预测研究[J]. 公路交通科技, 2021, 38(1): 121-127.
YANG Chunxia, QIN Jiapeng, WANG Qing, et al. Research on short-term traffic flow prediction based on multi-lane weighted fusion[J]. Journal of Highway and transportation Technology, 2021, 38(1): 121-127.
[22] 堀端裕司, 绳间润一, 河合雅弘, 等.洗衣机: 201880008166.4[P]. 2021-08-20.
HORIBATA Hiroshi, NAWAMA Junichi, KAWAI Masahiro, et al. Wash machine: 201880008166.4[P]. 2021-08-20.
[23] 王玉梅. 多重共线性的消除: 不相关法[J]. 统计教育, 2006, 7(2): 18-19.
WANG Yumei. Elimination of multicollinearity: an uncorrelation method[J]. Statistics Education, 2006, 7(2): 18-19.
[24] 陈玲燕. 多重共线性下的线性回归方法综述[J]. 市场研究, 2008(4): 148-152.
CHEN Lingyan. A review of linear regression methods under multicollinearity[J]. Marketing Reasearch, 2008(4): 148-152.
[25] 杨楠. 岭回归在解决多重共线性问题中的独特作用[J]. 统计与决策, 2004(3): 14-15.
YANG Nan. The unique role of ridge regression in solving multicollinearity problem[J]. Statistics and Decision, 2004(3): 14-15.
[26] 陈叶洁, 吴丹萍, 王佩国. 基于眼动仪的针织服装细节设计探讨[J]. 现代纺织技术, 2013, 21(6): 25-27,31.
CHEN Yejie, WU Danping, WANG Peiguo. Discussion on the detail design of knitwear based on eye tracker[J]. Advanced Textile Technology, 2013, 21(6): 25-27,31.
[1] GAN Meichen, LI Min. Design and realization of a collocation recommendation system for women's clothing [J]. Journal of Textile Research, 2020, 41(10): 122-131.
[2] WANG Jianing, LIU Chengxia, NAGAI Nobuo, YUMOTO Lei, ZHOU Ao. Effect of apparel illusion pattern on visual and autonomic nervous system for human being [J]. Journal of Textile Research, 2020, 41(05): 153-158.
[3] . Application effect of blue and white patterns of Ming Dynasty on cheongsam [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 126-132.
[4] . Sensibility assessment of spring and summer shirt yarn-dyed fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(08): 59-64.
[5] . Influence of color and structure of scented fabrics on smell perception [J]. Journal of Textile Research, 2015, 36(12): 85-91.
[6] . Individual differences in perceptual evaluation for fashion design: taking female students as research subjects [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(5): 137-0.
[7] WANG Ying;CHEN Yan. Relationship between perception and designing elements of woman′s overcoats [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(11): 97-100.
[8] CHEN Yan;LI Dong-gao . Evaluation method of color perception [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(2): 118-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .